ON THE COVER

The maize transposable element Ds has been used extensively in gene tagging programs, but a large-scale collection of insertions has not been available to the maize community. In this issue (pages 1667–1685), Vollbrecht and colleagues position over 1500 Ds insertions throughout the maize genome. The vast majority of the insertions targeted gene-rich regions of the genome and preferentially inserted into exon and intron sequence when compared with the distribution of Mutator insertions. This collection will serve as a foundation for future gene tagging programs in maize. The cover shows the instability of a Ds insertion at the a1 locus. Excisions of the element restore gene function, resulting in multiple colored sectors in anthers and glumes of the tassel.

IN BRIEF

Dissecting the Functions of Class XI Myosins in Moss and Arabidopsis

Kathleen L. Farquharson and Chris J. Staiger

IN THIS ISSUE

On the Habits of Transposons: Dissociation Mapping in Maize and Megabase Sequencing in Wheat Reveal Site Preferences, Distribution, and Evolutionary History

Jennifer Mach

LETTER TO THE EDITOR

Sweet and Sour: A Scientific and Legal Look at Herbicide-Tolerant Sugar Beet

Esther E. McGinnis, Mary H. Meyer, and Alan G. Smith

PERSPECTIVE

The Evolution of Epitype

Richard B. Meagher

RESEARCH ARTICLES

Genome-Wide Distribution of Transposed Dissociation Elements in Maize

Megabase Level Sequencing Reveals Contrasted Organization and Evolution Patterns of the Wheat Gene and Transposable Element Spaces

Frédéric Choulet, Thomas Wicker, Camille Rustenholz, Etienne Paux, Jérome Salse, Philippe Leroy, Stéphane Schlub, Marie-Christine Le Paslier, Ghislaine Magdelenat, Catherine Gonthier, Arnaud Couloux, Hikmet Budak, James Breen, Michael Pumphrey, Sixin Liu, Xiuying Kong, Jizeng Jia, Marta Gut, Dominique Brunel, James A. Anderson, Bikram S. Gill, Rudi Appels, Beat Keller, and Catherine Feuillet

VERDANDI Is a Direct Target of the MADS Domain Ovule Identity Complex and Affects Embryo Sac Differentiation in Arabidopsis

Luis Matias-Hernandez, Raffaella Battaglia, Francesca Galbiati, Marco Rubes, Christof Eichenberger, Ueli Grossniklaus, Martin M. Kater, and Lucia Colombo

DWA1 and DWA2, Two Arabidopsis DWD Protein Components of CUL4-Based E3 Ligases, Act Together as Negative Regulators in ABA Signal Transduction

Jae-Hoon Lee, Hye-Jin Yoon, William Terzaghi, Cristina Martinez, Mingqiu Dai, Jigang Li, Myung-Ok Byun, and Xing Wang Deng

ON THE COVER

The maize transposable element Ds has been used extensively in gene tagging programs, but a large-scale collection of insertions has not been available to the maize community. In this issue (pages 1667–1685), Vollbrecht and colleagues position over 1500 Ds insertions throughout the maize genome. The vast majority of the insertions targeted gene-rich regions of the genome and preferentially inserted into exon and intron sequence when compared with the distribution of Mutator insertions. This collection will serve as a foundation for future gene tagging programs in maize. The cover shows the instability of a Ds insertion at the a1 locus. Excisions of the element restore gene function, resulting in multiple colored sectors in anthers and glumes of the tassel.
MOTHER OF FT AND TFL1 Regulates Seed Germination through a Negative Feedback Loop Modulating ABA Signaling in Arabidopsis

Wanyan Xi, Chang Liu, Xingliang Hou, and Hao Yu

Arabidopsis ROOT UVB SENSITIVE2 WEAK AUXIN RESPONSE1 Is Required for Polar Auxin Transport

L. Ge, W. Peer, S. Robert, R. Swarup, S. Ye, M. Prigge, J.D. Cohen, J. Friml, A. Murphy, D. Tang, and M. Estelle

Gravitropism of Arabidopsis thaliana Roots Requires the Polarization of PIN2 toward the Root Tip in Meristematic Cortical Cells

Abidur Rahman, Maho Takahashi, Kyoei Shibasaki, Shuang Wu, Takehito Inaba, Seiji Tsurumi, and Tobias I. Baskin

RAV-Like1 Maintains Brassinosteroid Homeostasis via the Coordinated Activation of BRI1 and Biosynthetic Genes in Rice

Byoung Il Je, Hai Long Piao, Soon Ju Park, Sung Han Park, Chul Min Kim, Yuan Hu Xuan, Su Hyun Park, Jin Huang, Yang Do Choi, Gynheung An, Hann Ling Wong, Shozo Fujikota, Min-Chul Kim, Ko Shimamoto, and Chang-deok Han

Arabidopsis RETINOBLASTOMA-RELATED Is Required for Stem Cell Maintenance, Cell Differentiation, and Lateral Organ Production

Lorenzo Borghi, Ruben Gutzat, Johannes Fütterer, Yec’han Laizet, Lars Hennig, and Wilhelm Gruissem

Phospholipase A2 Is Required for PIN-FORMED Protein Trafficking to the Plasma Membrane in the Arabidopsis Root

Ok Ran Lee, Soo Jin Kim, Hae Jin Kim, Jeum Kyu Hong, Stephen Beungtae Ryu, Sang Ho Lee, Anindya Ganguly, and Hyung-Taeg Cho

The Deubiquitinating Enzyme AMSH3 Is Required for Intracellular Trafficking and Vacuole Biogenesis in Arabidopsis thaliana

Erika Isono, Anthis Katsiarimpa, Isabel Karin Müller, Franziska Anzenberger, York-Dieter Stierhof, Niko Geldner, Joanne Chory, and Claus Schwuchheimer

Protection of Telomeres 1 Is Required for Telomere Integrity in the Moss Physcomitrella patens

Eugene V. Shakirov, Pierre-François Perroud, Andrew D. Nelson, Maren E. Cannell, Ralph S. Quatrano, and Dorothy E. Shippen

Crystal Structures of DNA-Whirly Complexes and Their Role in Arabidopsis Organelle Genome Repair

Laurent Cappadocia, Alexandre Maréchal, Jean-Sébastien Parent, Etienne Lepage, Jurgen Sygusch, and Normand Brisson

Myosin XI Is Essential for Tip Growth in Physcomitrella patens

Luis Vidali, Graham M. Burkart, Robert C. Augustine, Erin Kerdavid, Erkan Tüzel, and Magdalena Bezanilla

Class XI Myosins Are Required for Development, Cell Expansion, and F-Actin Organization in Arabidopsis

Valera V. Peremyslov, Alexey I. Prokhnevsky, and Valerian V. Dolja

The TOR Pathway Modulates the Structure of Cell Walls in Arabidopsis

Ruth-Maria Leiber, Florian John, Yves Verhertbruggen, Anouchk Diet, J. Paul Knox, and Christoph Ringli

The Mg-Chelatase H Subunit of Arabidopsis Antagonizes a Group of WRKY Transcription Repressors to Relieve ABA-Responsive Genes of Inhibition

Yi Shang, Lu Yan, Zhi-Qiang Liu, Zheng Cao, Chao Mei, Xi Jin, Fu-Qing Wu, Xiao-Fang Wang, Shu-Yuan Du, Tao Jiang, Xiao-Feng Zhang, Rui Zhao, Hai-Li Sun, Rui Liu, Yong-Tao Yu, and Da-Peng Zhang

The Conserved Splicing Factor SUA Controls Alternative Splicing of the Developmental Regulator ABI3 in Arabidopsis

Matteo Sugliani, Vittoria Brambilla, Emilie J.M. Clerkx, Maarten Koomneef, and Wim J.J. Soppe

The Molecular Basis for Distinct Pathways for Protein Import into Arabidopsis Chloroplasts

Hitoshi Inoue, Caleb Rounds, and Danny J. Schnell
EOBII, a Gene Encoding a Flower-Specific Regulator of Phenylpropanoid Volatiles’ Biosynthesis in Petunia

Ben Spitzer-Rimon, Elena Marheva, Oren Barkai, Ira Marton, Orit Edelbaum, Tania Masci, Naveen-Kumar Prathapani, Elena Shklarman, Marianna Ovadis, and Alexander Vainstein

An Orange Ripening Mutant Links Plastid NAD(P)H Dehydrogenase Complex Activity to Central and Specialized Metabolism during Tomato Fruit Maturation

Shai Nashilevitz, Cathy Melamed-Bessudo, Yinon Izkovich, Ilana Rogachev, Sonia Osorio, Maxim Itkin, Avital Adato, Ilya Pankratov, Joseph Hirschberg, Alisdair R. Fernie, Shmuel Wolf, Björn Usadel, Avraham A. Levy, Dominique Rumeau, and Asaph Aharoni

Arabidopsis Small Ubiquitin-Like Modifier Paralogs Have Distinct Functions in Development and Defense

Harrold A. van den Burg, Ramachandra K. Kini, Robert C. Schuurink, and Frank L.W. Takken

Internalization of Flax Rust Avirulence Proteins into Flax and Tobacco Cells Can Occur in the Absence of the Pathogen

Maryam Rafiqi, Pamela H.P. Gan, Michael Ravensdale, Gregory J. Lawrence, Jeffrey G. Ellis, David A. Jones, Adrienne R. Hardham, and Peter N. Dodds

A Pseudomonas syringae ADP-Ribosyltransferase Inhibits Arabidopsis Mitogen-Activated Protein Kinase Kinases

Yujing Wang, Jifeng Li, Shuguo Hou, Xingwei Wang, Yuan Li, Dongtao Ren, She Chen, Xiaoyan Tang, and Jian-Min Zhou

A Vascular Arsenite Transporter Necessary for Arsenic Tolerance in the Arsenic Hyperaccumulating Fern Pteris vittata Is Missing in Flowering Plants

Emily Indriolo, GunNam Na, Danielle Ellis, David E. Salt, and Jo Ann Banks

RNA-Seq Analysis of Sulfur-Deprived Chlamydomonas Cells Reveals Aspects of Acclimation Critical for Cell Survival

David González-Ballester, David Casero, Shawn Cokus, Matteo Pellegrini, Sabeeha S. Merchant, and Arthur R. Grossman

Sho1 and Msb2-Related Proteins Regulate Appressorium Development in the Smut Fungus Ustilago maydis

Daniel Lanver, Artemio Mendoza-Mendoza, Andreas Brachmann, and Regine Kahmann

Some figures in this article are displayed in color online but in black and white in the print edition.

Online version contains Web-only data.

Open Access articles can be viewed online without a subscription.

The Plant Cell (ISSN 1040-4651, online ISSN 1531-298X) is published monthly (one volume per year) by the American Society of Plant Biologists, 15501 Monona Drive, Rockville, MD 20855-2768, and is produced by Dartmouth Journal Services, Waterbury, VT. The institutional price for the print and online versions is based on type of institution; contact institution@aspb.org. A subscription includes both *The Plant Cell* and *Plant Physiology*; single copies may be purchased for $95 each, plus $10 shipping (U.S.) or $12 (outside U.S.). Members of the American Society of Plant Biologists may subscribe to *The Plant Cell* for $185. Nonmember individuals may subscribe for $375. For matters regarding subscriptions, contact Suzanne Cholwek, ASPB, 15501 Monona Drive, Rockville, MD 20855-2768; telephone 301/296-0926; fax 301/251-6740; e-mail cholwek@aspb.org. Notify ASPB in writing within 3 months (domestic) or 6 months (foreign) of issue date, and defective copies or copies lost in the mail will be replaced. Send all inquiries regarding display advertising to FASEB AdNet, 9650 Rockville Pike, Bethesda, MD 20814-3998; telephone 301/634-7791; fax 301/634-7153; e-mail adnet@faseb.org. Periodicals postage paid at Rockville, MD 20850, and at additional mailing offices.

Postmaster: Send address changes to *The Plant Cell*, American Society of Plant Biologists, 15501 Monona Drive, Rockville, MD 20855-2768. The online version of *The Plant Cell* is available at www.plantcell.org.

Permission to Reprint: Permission to make digital or hard copies of part or all of a work published in *The Plant Cell* is granted without fee for personal or classroom use provided that copies are not made or distributed for profit or commercial advantage and that copies bear the full citation and the following notice on the first page: “Copyright American Society of Plant Biologists.” For all other kinds of copying, request permission in writing from Nancy A. Winchester, Publications Director, ASPB headquarters.