Identification of Plant RAD52 Homologs and Characterization of the Arabidopsis thaliana RAD52-Like Genes

Aviva Samach,a Cathy Melamed-Bessudo,a Naomi Avivi-Ragolski,a Shmuel Pietrokovski,b,1 and Avraham A. Levya,b,1
a Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
b Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel

RADiation sensitive52 (RAD52) mediates RAD51 loading onto single-stranded DNA ends, thereby initiating homologous recombination and catalyzing DNA annealing. RAD52 is highly conserved among eukaryotes, including animals and fungi. This article reports that RAD52 homologs are present in all plants whose genomes have undergone extensive sequencing. Computational analyses suggest a very early gene duplication, followed by later lineage-specific duplications, during the evolution of higher plants. Plant RAD52 proteins have high sequence similarity to the oligomerization and DNA binding N-terminal domain of RAD52 proteins. Remarkably, the two identified Arabidopsis thaliana RAD52 genes encode four open reading frames (ORFs) through differential splicing, each of which specifically localized to the nucleus, mitochondria, or chloroplast. The A. thaliana RAD52-1A ORF provided partial complementation to the yeast rad52 mutant. A. thaliana mutants and RNA interference lines defective in the expression of RAD52-1 or RAD52-2 showed reduced fertility, sensitivity to mitomycin C, and decreased levels of intrachromosomal recombination compared with the wild type. In summary, computational and experimental analyses provide clear evidence for the presence of functional RAD52 DNA-repair homologs in plants.

INTRODUCTION

Genetic studies in yeast have shown that Radiation sensitive52 (RAD52) plays an essential role in homology-dependent DNA double strand break (DSB) repair and recombination (Symington, 2002). rad52 mutants are extremely sensitive to ionizing radiation, exhibit phenotypic changes in somatic recombination pathways, including single-strand annealing, break-induced repair, and pathways involving Holliday junction intermediates, and fail to undergo meiotic recombination (Symington, 2002). Similarly, gene targeting is completely abolished in RAD52 deletion mutants in the yeast Kluyveromyces lactis (Miline and Weaver, 1993). Genetically, RAD52 forms an epistatic group with RAD51 and RAD54, all of which affect the response to DNA damaging agents (Symington, 2002). RAD52 is primarily involved in repair of DNA DSBs and is also implicated in repair of other types of DNA lesions, such as stalled replication forks (Gangavarapu et al., 2007). Mechanistically, RAD52 is recruited to the Replication Protein A (RPA)-single-stranded DNA nucleoprotein complex, formed upon DSB induction and exonucleolytic ends resection, and mediates its replacement by RAD51. RAD51 then catalyzes strand invasion and D-loop formation. Eventually, RAD52 may assist in capturing the second DNA end and promote its annealing to the D-loop, thus leading to the formation of a Holliday junction (Mortensen et al., 2009).

The RAD52 protein has several domains, each with a distinct function. Its N-terminal is the most conserved domain across eukaryotic homologs (Park et al., 1996; Shen et al., 1996; Shinohara et al., 1997; Hays et al., 1998; Mer et al., 2000; Stasiak et al., 2000; Ranatunga et al., 2001). This domain enables the formation of a ring-shaped oligomer by including sites for self-association and in yeast for interaction with its RAD59 paralog (Shinohara et al., 1998; Stasiak et al., 2000; Ranatunga et al., 2001). The external part of the ring formed in the human homolog was shown to include a positively charged, DNA binding groove (Kagawa et al., 2002; Singleton et al., 2002). The central portion contains a domain for interaction with RPA (Hays et al., 1998). The C terminus, which interacts with RAD51 and also binds single- or double-stranded DNA (Milne and Weaver, 1993; Mortensen et al., 1996), demonstrated the lowest degree of conservation across species.

Yeast and animal RAD52 proteins are similar in sequence and function, but also have some significant variances. Although disruption of the mouse RAD52 homolog strongly reduces gene targeting, it does not cause sterility or sensitivity to ionizing radiation (Rijkers et al., 1998), suggesting either a less critical role when compared with its yeast homolog or genetic redundancy. Genetic analysis of single and double mutant cell lines suggests that the human RAD51 paralog XRCC3 may partially compensate for the absence of RAD52 (Fujimori et al., 2001). Similarly, BRC2 demonstrates functional similarity to RAD52, in that it interacts with RAD51 and loads it on an RPA-covered nucleofilament (San Filippo et al., 2006; San Filippo et al., 2008). In addition, numerous mammalian RAD52 isoforms, generated by
alternative splicing, code for protein variants that may have distinct roles during homologous recombination (Thorpe et al., 2006). In chicken cells, RAD52 is required for homologous recombination but differs from its yeast homolog in other DNA repair functions (Sonoda et al., 2001).

In plants, RAD51 (Doutriaux et al., 1998; Bleuyard et al., 2006) and RAD54 (Osakabe et al., 2006; Shaked et al., 2006) homologs have been identified, leaving the question of whether plants contain RAD52 homologs (Iyer et al., 2002; Mortensen et al., 2009) or whether their absence may be compensated for by two plant BRCA2 homologs (Siaud et al., 2004; Abe et al., 2009). Nevertheless, the absence of RAD52 in plants is somewhat intriguing, considering its role in mediating critical steps of homologous recombination and its relatively high conservation across eukaryotes. This article describes the search for, discovery, and characterization of plant RAD52 homologs. Computational and experimental evidence confirming the correspondence of the plant homologs to yeast and animal RAD52 proteins is provided. In addition, functional analysis of Arabidopsis thaliana RAD52 homologs and localization of their splice variant isoforms was performed. These data collectively confirm the presence of RAD52 DNA-repair homologs in plants.

RESULTS

Higher Plants Include a Family of RAD52 Homologs

Encoding Several Genes and Splicing Isoforms

Plant RAD52 homologs were first identified in the A. thaliana genome by querying it with the yeast RAD52 protein using the PSI BLAST program. A putative protein was detected, (At1g71310, accession number NP_849876.1), with an E-value of 1e-24 and 31% amino acid sequence identity to the yeast RAD52 56-176 N-terminal residues. Next, multiple sequence alignments (MSAs) of land plant homologs of the identified A. thaliana RAD52-like protein were constructed (see Supplemental Data Sets 1 and 2 online). These plant proteins are 170 to 220 residues long, with weakly conserved N termini and a well-conserved 129-residue-long region at the central and C-terminal segments. This latter region was found to be significantly similar, with an E-value of 7.8 \times 10^{-5} \text{,} \text{(Compass program [Sadreyev and Grishin, 2003])} to MSAs of RAD52 proteins from animals, fungi, and lower eukaryotes in the RAD52 catalytic domains for homologous pairing and multimerization (Figure 1; see Supplemental Data Set 3 online). Of note, human residues found to play an important role in DNA binding (magenta circles in Figure 1) tend to be conserved across kingdoms, including in plants.

Plant RAD52 homologs were identified by thorough sequence analysis of various available plant data sources covering proteins, expressed sequence tags (ESTs), transcriptomes, and genome data. Full and partial protein sequences were assembled from diverse land plants, ranging from liverworts and mosses to flowering plants, and from charophyte unicellular green algae (Figure 2). The plant RAD52 homolog family was categorized into two subtypes, each of whose members were found in gymnosperms, monocots, dicots, and liverworts. Some lineages have only one homolog type (e.g., mosses with only type 2 and charophytes with only type 1) (Figure 2). The sequence similarity between the two RAD52 homolog types was typically 40 to 67% across the C-terminal two-thirds (120 to 150 amino acids) of the protein sequence (see Supplemental Figure 1 online). The presence of the two homolog types suggests a gene duplication that occurred as early as the appearance of nonvascular land plants. Later duplications were apparent in specific lineages. These duplicates are separate genes within the same strain, rather than different alleles in the same strain or in different strains of the same species. This was verified by finding the duplicates in different genomic contexts, by finding several duplicates in single strains, and by finding common duplicates in several related species, as in the case of the grasses, which include type-2 RAD52 homologs. Mosses, represented by two very well-sequenced species (Physcomitrella patens [Rensing et al., 2008] and Synechocystis sp. [Oliver et al., 2004]), seem to include only type-2 RAD52 homologs. P. patens has two type-2 RAD52 homologs that apparently underwent duplication within the mosses lineage. Although almost all duplications were in type-2 RAD52 homologs, maize (Zea mays) features two type-1 paralogs on chromosomes 3 and 8. Sequences of type-1 RAD52 homologs from transcribed genes were found in the Chara vulgaris and Spirogyra pratensis charophyte unicellular green algae species (National Center for Biotechnology Information [NCBI] Sequence Read Archive database entry SRR041525; Timme and Delwiche, 2010). Lack of identifiable type-2 RAD52 homologs in the charophytes’ available expressed gene data could be attributable to their absence from this lineage or to specific or low expression of their genes. In either case, the type-1 and type-2 duplication apparently predates the divergence of the charophyte lineage (Figure 2). No RAD52 homologs were found in extensive data available for other major lineages of algae, including chlorophyte green algae, rhodophyte red algae, haptophyte algae, and heterokont (stramenopiles, including brown algae, diatoms, and oomycetes).

The described sequence similarity allowed us to model the structure of plant RAD52 homologs on the determined structures of the N-terminal domain of human RAD52 (Kagawa et al., 2002; Singleton et al., 2002). As expected by the relatively long corresponding regions and few insertion/deletion points (Figure 1; see Supplemental Figure 1 online), the same topology and structure features of human RAD52 are present in the models of A. thaliana RAD52 homologs (see Supplemental Figure 2 online). The residues corresponding to the two known RAD52 DNA binding sites (Kagawa et al., 2002; Singleton et al., 2002) are mostly conserved in the plant RAD52 homologs (Figure 1) and form similar sites, including both the positively charged groove and the second DNA binding site (see Supplemental Figures 2B and 2C online). The alpha helix of the RAD52 stem region (residues 145 to 163 in At1g71310, corresponding to residues 159 to 134 in human RAD52) demonstrated a repetitive pattern of sequence conservation. Residues facing and interacting with the stem region beta sheet were highly conserved in the plant RAD52 homologs, whereas residues facing the predicted single-stranded DNA binding site were not conserved (Figure 1; see Supplemental Figure 2D online). These features reinforce the functional homology between the plant RAD52 homolog family and the known RAD52 proteins, suggest similar function for
these two families, and should assist molecular studies of plant RAD52 proteins.

RAD52-1 (At1g71310) and RAD52-2 (At1g47870), the two identified A. thaliana RAD52 homologs, included three splice variants for RAD52-1, encoding open reading frames (ORFs) RAD52-1A and RAD52-1B. Two splice variants were found for RAD52-2, encoding ORFs RAD52-2A and RAD52-2B (Figure 3). The At1g71310.3 (RAD52-1A ORF) splice variant bore three exons, whereas splice variants At1g71310.1 and At1g71310.2 both encoded the same ORF (RAD52-1B), and each features four exons but differs in the number of introns and in the length of the 3' untranslated region (UTR). The RAD52-2A transcript had at least two exons, and the RAD52-2B transcript had three exons (Figure 3).

A. thaliana RAD52s Localize in the Nucleus, Mitochondria, and Chloroplasts

Each of the A. thaliana RAD52 ORFs was fused to enhanced green fluorescent protein (EGFP), and the resulting constructs were transiently expressed in A. thaliana seedlings, roots, and cell culture protoplasts. Protein localization was determined in cells using confocal microscopy to detect colocalization of the EGFP fluorescence and cellular markers (Figure 4). RAD52-1A was found, in the three cell types (Figure 4A; see Supplemental Figures 3A and 3B online), to colocalize with VirE2-nuclear localization signal (NLS)-mRFP and 4',6-diamidino-2-phenylindole-positive controls for nuclear localization. RAD52-1A was homogenously expressed throughout the nucleus, with the exception of the nucleolus. Note that EGFP alone does not localize to the nucleus (see Supplemental Figure 3C online). RAD52-1B colocalized with the mitochondrial Sc-COX4-Mito-mCherry (Figure 4B). Unlike RAD52-1A, RAD52-2A expression was only apparent in foci at the periphery of the nucleus and chloroplast (Figure 4C; see Supplemental Figure 3D online). However, in tobacco (Nicotiana tabacum) BY2 cells, RAD52-2A was evenly distributed throughout the nucleus (see Supplemental Figure 3E online) RAD52-2B demonstrated a punctate expression pattern within the chloroplast (Figure 4D).

The differential localization between RAD52-1A and RAD52-1B was hypothesized to relate to their different C-terminal regions,
Figure 2. Plant RAD52 Homolog Phylogeny.

A dendrogram of plant RAD52 homologs was calculated from the MSA shown in Figure 1 and Supplemental Data Set 2 online. The dendrogram was outgroup-rooted from the position of animal, fungal, and protist (human, Saccharomyces cerevisiae, Caligus rogercresseyi [crustacean], Trichoplax, and Entamoeba) RAD52 sequences that were added to the alignment. All the added species clustered together on the dendrogram. Bootstrap support values from 1000 replicates are shown in each node. The scale bar shows the number of amino acid substitutions per branch length. Branches are colored by major systematic divisions and labeled accordingly. Prefixes “1” or “2” denote the RAD52 subgroup type, and “a” or “b” indicate that more than a single gene of a particular homolog type was present in a given species.

The dendogram was drawn using the FigTree program (http://tree.bio.ed.ac.uk/software/figtree).
There are three known splice variants for RAD52-1 and two for RAD52-2. RAD52-1B.1 and RAD52-1B.2 are the two RAD52-1 (At1g71310) cDNAs, with 531-bp-long ORFs; RAD52-1A has a 498-bp-long ORF. T-DNA mutant SAIL_25_H08 insertion is in the 5' UTR, 83 bp 3' to the putative cDNA start, and 97 bp 5' to ATG. Dashed lines indicate the location of the 385 bp RNAi for silencing of RAD52-1 transcripts through targeting of the first exon, starting at 134 bp 5' to ATG and ending at 251 bp 3' to ATG. The NLS of RAD52-1A is marked by an open box. RAD52-2 (At5g47870) cDNAs are RAD52-2A with a 531-bp-long ORF and RAD52-2B with a 600-bp-long ORF. T-DNA mutant WiscDsLox303H06 insertion is in the 5' UTR 25 bp 3' to the putative cDNA start and 36 bp 5' to ATG. Dashed lines indicate the location of the 383 bp RNAi for silencing of RAD52-2 transcripts through targeting of the first exon, starting at 61 bp 5' to ATG and ending at 322 bp 3' to ATG. Full transcript lengths are 1435 bp, 2280 bp, 1559 bp, and 1502 bp for RAD52-1A, RAD52-1B.1, RAD52-1B.2, and RAD52-2B, respectively. Drawings of introns, exons, and UTRs are approximately to scale.

Expression of RAD52-1 and RAD52-2 in the Wild Type, Mutant, and RNA interference A. thaliana Lines

RAD52 expression was analyzed using real-time PCR with splice-variant-specific primers sets (see Supplemental Figure 4 online). Expression was compared between cauline leaves, flower buds, open flowers, 4-d-old seedling roots, 4-d-old seedling shoots, ~3-mm siliques, and ~6-mm siliques. RAD52-1A transcription levels were similar in all these tissues, with ~1.5-fold higher expression in seedling roots (see Supplemental Figure 4A online). RAD52 transcripts, except RAD52-1A, showed a marked increase of ~100-fold in plant tissues of 4-d-old seedling shoots and roots (see Supplemental Figures 4B to 4E online) when compared with other tested tissues. Expression of each splice variant was also compared in 16-d-old whole wild-type seedlings grown in the presence or absence of 10 μg/mL mitomycin C (MMC) (see Supplemental Figure 4F online). Treatment with MMC was 6 d, from day 9 to day 16. The changes we observed at this stage were relatively minor, even if in some cases statistically significant.

Mutant and RNA interference (RNAi) lines with altered RAD52-1 and RAD52-2 expression were generated and characterized to study the functional roles of these genes. A homozygous line was prepared from a heterozygote line containing the rad52-1 SAIL_25_H08 T-DNA insertion allele. The homozygote rad52-1 progeny were obtained in one-quarter of the plants, as expected for Mendelian inheritance. Homozygous mutants were also prepared for the rad52-2 WiscDsLox303H06 T-DNA insertion allele, giving rise to rad52-2. Only two rad52-2 homozygotes were found among the 46 progeny obtained from heterozygote RAD52/ rad52-2 plants, a ratio significantly lower than that expected via Mendelian inheritance (P [χ²] = 0.0012). Such deviation from classical Mendelian inheritance could be attributable to various causes, including partial lethality of the rad52-2/rad52-2 homozygote embryo or partial lethality of gametes (males or females or both) containing the recessive rad52-2 allele. Embryo lethality is expected to yield a 1 (wild type): 2 (heterozygote) ratio in the progeny of heterozygous plants. Out of the 46 progeny of RAD52/rad52-2 plants, 15 were genotyped as the wild type, whereas 29 were genotyped as homozygous. This is in accordance (P [χ²] = 0.9151) with the 1:2 ratio, supporting that the rad52-1 gametes were viable and that embryo viability was compromised. Note that a 1 (wild type): 1 (heterozygote) model that would be caused by gamete lethality in male or female lineage was rejected (P [χ²] = 0.034), further indicating that there is no major problem of gamete viability. The location of the T-DNA insertion within each gene is depicted in Figure 3 and described at the sequence level (see Methods and Supplemental Figure 5 online).

RNAi lines were constructed for repression of RAD52-1 and RAD52-2 transcripts (see Methods). Three single-locus T-DNA lines of each RNAi construct were selected for further analyses. RAD52 expression was determined by real-time PCR on mRNA isolated from seedlings of the wild type, mutant, and RNAi lines (Figure 5). Expression analysis of the RAD52-1 transcripts in the various lines showed that rad52-1 exhibited almost no expression compared with the wild type; RAD52-1 RNAi lines (52-1 RNAi) showed reduced expression ranging from moderate to ~60,000-fold less than the wild type (Figure 5, line 52-1 RNAi3). rad52-1 and line 52-1 RNAi3 were selected for further characterization of the effect of reduced RAD52-1 expression. Upon RNAi inhibition of rad52-2, RAD52-2 exhibited slightly higher transcript levels than the wild type. This was not statistically significant but was consistent in all RNAi lines, suggesting the possibility of compensation. Similarly, expression analysis of the RAD52-2 transcript in the various lines showed that the rad52-1 and rad52-2 RNAi lines had slightly more RAD52-2 transcript than the wild type. The expression of the rad52-2 transcript in
the rad52-2 mutant was reduced by approximately twofold. RAD52-2 RNAi (52-2 RNAi) lines showed a reduction in expression ranging from fivefold to 12-fold compared with the wild type (Figure 5). rad52-2 and line 52-2 RNAi8 were selected for further characterization of the RAD52-2 reduced expression phenotype. The rad52-1 mutant and 52-2 RNAi lines were combined for a most effective double knockdown. Expression of RAD52-1 and RAD52-2 in the double knockdown plants was similar to the single knockdown lines from which they originated, rad52-1 and 52-2 RNAi8 (Figure 5).

It was recently discovered that the telomerase RNA1 (TER1) transcript overlaps with the first two exons and introns of RAD52-1 (Cifuentes-Rojas et al., 2011). TER1 is the RNA subunit of telomerase and serves as a template for telomeric DNA addition. TER1 transcript levels and the consequential telomerase activity could potentially be affected by the rad52-1 mutant.

Figure 4. Cellular Localization of RAD52 Proteins in A. thaliana Seedlings.
Four-day-old A. thaliana seedlings were transformed with agrobacteria carrying the fusion protein constructs (A) 52-1A-EGFP and VirE2-NLS-mRFP; (B) 52-1B-EGFP and Sc-COX4-Mito-mCherry; (C) 52-2A-EGFP and VirE2-NLS-mRFP; (D) 52-2B-EGFP; and (E) 52-1A-EX3-specific and VirE2-NLS-mRFP. VirE2-NLS-mRFP is a nuclear marker. Sc-COX4-Mito-mCherry is a mitochondrial marker. 52-1A-EX3-specific is a short sequence that is unique to RAD52-1A. In each panel, the first picture is of EGFP, the second is of the localization marker, the third is an overlay of the first two, and the last is an image captured under visible light (differential interference contrast [DIC]).
Bars = 10 μm.
and the RAD52-1 RNAi and might influence the phenotype of these lines. For this reason, TER1 transcript levels were analyzed in inflorescences, where TER1 is highly expressed. A sixfold and threefold decrease in TER1 expression was observed in the rad52-1 mutant and the RAD52-1 RNAi line, respectively, when compared with the wild type (see Supplemental Figure 6 online). However, terminal restriction fragment (TRF) analysis was also performed, and no decrease in telomere length was detected in either line when compared with the wild type (see Supplemental Figure 6 online).

Reduced Fertility of rad52-1 and rad52-2 Mutants and RNAi Lines

Significant reductions in fertility, expressed as the number of seeds per silique, correlated with reduced expression of RAD52 genes in the tested mutant and RNAi lines (Figure 6). However, no additive reduction in fertility was observed upon combination of rad52-1 and RAD52-2 RNAi when compared with each of these lines separately. The measured reduction in seed number per silique in the various knockdown lines could be caused by the involvement of RAD52-1 and RAD52-2 in the viability of either or both somatic and meiotic cell types.

Role of RAD52-1 and RAD52-2 in DNA Damage Response and Homologous Recombination

A series of assays were performed to evaluate the expected role of RAD52-1 and RAD52-2 in plant DNA recombination and DNA damage response. In complementation assays, RAD52-1A complemented the yeast rad52 methyl methanesulfonate (MMS)-sensitive phenotype to a lesser extent than the yeast RAD52 (see Supplemental Figure 7 online). Complementation was only partial, but reproducible, suggesting that the A. thaliana RAD52 retained DNA repairing roles similar to those performed by the yeast RAD52 homolog.

The involvement of A. thaliana RAD52 in DNA damage repair was then tested by monitoring seedling growth after MMC-induced DNA damage. Interstrand cross-links mediated by MMC can lead to DSBs (Rink et al., 1996), which in turn can be repaired by homologous recombination. Both the rad52-1 mutant and RAD52-1 RNAi lines showed a significant reduction in seedling growth after MMC treatment (Figure 7A) compared with the wild type, suggesting defective repair capacity. Similar reductions in growth rates were also observed in the rad52-2 mutant and RAD52-2 RNAi lines (Figure 7B). Sensitivity to MMC treatment was not additive in the rad52-1 and RAD52-2 RNAi combination (Figure 7C), in agreement with the observed combination fertility phenotype.

Somatic recombination rates were assessed in the rad52-1 mutant and RAD52-2 RNAi lines using an intrachromosomal recombination (ICR) assay with a reporter transgene consisting of two overlapping fragments of the β-glucuronidase (GUS) (uidA) gene separated by a hygromycin selectable marker (Swoboda et al., 1994). rad52-1 mutant plants and GUS recombination reporter plants were crossed, and the frequency of recombination events was monitored in F3 progeny plants homozygous for both the recombination reporter and the rad52-1 mutation (see Methods). The RAD52-2 RNAi construct was
directly transformed into the ICR line, and a line demonstrating an approximately fivefold reduction in RAD52-2 RNA was selected for further analysis in T2 progeny plants. Somatic ICR frequencies were determined in the wild type versus mutant lines under normal or MMC treatment conditions. No difference in ICR rates was detected in the rad52-1 mutant under normal conditions (Figure 8A); however, when seedlings were treated with MMC, ICR rates were significantly reduced in the mutant compared with the wild type (Figure 8B). In the RAD52-2 RNAi line, a significant reduction in ICR rates compared with the wild type was detected under both normal and MMC treatment conditions (Figures 8C and 8D, respectively). Both the somatic homologous recombination phenotype and the MMC sensitivity of the RAD52 mutants and RNAi lines are indicative of defective repair pathways.

DISCUSSION
The findings reported herein describe RAD52 homologs in plants, detected using sensitive computational analyses of conserved domain MSAs. Moreover, conservation of predicted structures and of amino acid residues important for DNA binding of human RAD52 (Kagawa et al., 2002) (Figure 1; see Supplementary Figure 1 online) strongly suggest a common function between plant RAD52 and the N-terminal domains of previously described RAD52 proteins.

The long forms of the RAD52 proteins in fungi and animals demonstrate high sequence similarity in their N-terminal domains. By contrast, the C-terminal segments of these RAD52 proteins contain the RAD51- and RPA-interaction regions and exhibit weak similarity (Park et al., 1996; Shen et al., 1996; Hays et al., 1998; Shinohara et al., 1998; Mer et al., 2000; Stasiak et al., 2000; Ranatunga et al., 2001). Moreover, the short forms of RAD52, resulting from alternative splicing, have been found to mostly contain the conserved N-terminal domain (Kito et al., 1999). Yeasts also include RAD59, which is homologous to the N-terminal domain of RAD52 and has overlapping functions with RAD52 (Kagawa et al., 2002). Bacteriophage homologs of RAD52 (Iyer et al., 2002) also only bear the RAD52 N-terminal domain (Ploquin et al., 2008). The plant RAD52 protein sequences resemble the short form that has only the N-terminal domain (Figure 1).

The plant RAD52 family can be divided in two subfamilies, unlike animals and several protists. Therefore, we conclude that an early gene duplication within the family occurred at the emergence of nonvascular land plants (Figure 2). The separation of the two plant RAD52 types is robust (bootstrap support value of 1000/1000) and apparent in the nonvascular land plant Marchantia polymorpha (a liverwort), but the positions of non-seed plant subgroups within either subgroup is less certain (Figure 2). Unlike the liverwort homologs, other nonseed plant representatives bear either one or the other homolog type. Mosses and lycophytes, whose sequenced genome is of high quality and fairly complete, feature the type-2 RAD52 homologs only (Figure 2). These nonseed plants probably lost the plant RAD52 type-1 gene presumably present in their progenitors. Presence of the RAD52 type-1 gene in two charophyte species indicates a common algal ancestor to all plant RAD52 genes, because land plants emerged from the charophyte green algae lineage (Finet et al., 2010). RAD52 homologs were not detected in chlorophytes, the other major green algae lineage, or other major lineages of algae (including red algae and diatoms). This divergence suggests that plant RAD52 genes serve as molecular markers of land plants and their specific green algae predecessors. In addition, a question

Figure 7. Sensitivity to MMC in Plants with Reduced RAD52 Gene Expression.
For each genotype, dry weight per seedling (mg) was compared in the absence of MMC or at 6 d after treatment with 1, 2, 5, 10, 20, 30 µg/mL MMC. The wild type (WT) was compared with each genotype using two-way analysis of variance. * indicates P < 0.05, ** indicates P < 0.01. Each data point is an average of three to four repeat experiments measuring five seedlings each. Error bars represent SE.
arises whether other genes substitute for the absence of \textit{RAD52} homologs in other algae.

In addition to gene duplication, alternative splicing contributes to the diversity of \textit{A. thaliana} \textit{RAD52} proteins and allows for their localization within all DNA-containing cellular compartments (Figures 3 and 4). The consistent sublocalization of the various \textit{RAD52} proteins within these organelles suggests their putative role in maintaining nuclear and organellar genomes. \textit{RAD52-1A} is localized within the nucleus. This splice variant contains a unique C-terminal 36 amino acid region (52-1A-ex3-specific) that

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure8}
\caption{DNA Damage Response and Homologous Recombination in Plants with Reduced \textit{RAD52} Gene Expression.}
\end{figure}

Somatic recombination rates were evaluated using the GUS ICR. Results are presented per plant for untreated plants [(A) and (B)] \(n = 128\) for each line; (C) and (D) \(n = 47\) wild type (WT) and 40 \textit{52-2 RNAi} and per leaf for 2 \(\mu\text{g/mL}\) MMC-treated plants [(A) and (B)] \(n = 230\) for each line; (C) and (D) \(n = 235\) wild type and 302 \textit{52-2 RNAi}, because of higher recombination rates. The wild type was compared with each genotype using the Wilcoxon nonparametric test. ** indicates \(P < 0.01\).
promotes EGFP accumulation in the nucleus and represents a new NLS sequence in A. thaliana. Unlike RAD52-1A, which was localized uniformly throughout the nucleus, RAD52-2A showed foci that were confined to the periphery of the nucleus, possibly within or outside of the nuclear envelope. To further investigate the atypical nuclear localization of RAD52-2A, we also tested localization in tobacco BY2 cells. A. thaliana RAD52-2A was uniformly distributed in tobacco nuclei (see Supplemental Figure 3E online). Although these experiments confirm the nuclear association of RAD52-2A, the discrepancy between the A. thaliana and tobacco localization data needs to be further studied. Mitochondrial localization of RAD52-1B hints at a functional role similar to that of the yeast mitochondrial genome maintenance101 (MGM101). The mitochondrial MGM101 is required for mitochondrial DNA replication or transmission. MGM101 features an active core with some degree of structural similarity with the RAD52 protein family. MGM101 also contains only the RAD52 N-terminal domain (Zuo et al., 2007). The DNA-maintenance machinery is also required for normal chloroplast function. For example, chloroplast DNA DSB repair by homologous recombination was demonstrated in Chlamydomonas (Odom et al., 2008); and in A. thaliana, a chloroplast-targeted homolog of RecA encoded by the nuclear genome was shown to be involved in chloroplast DSB repair (Rowan et al., 2010). Plant RAD52 homologs targeted to the chloroplast, such as A. thaliana RAD52-2, could take part in the chloroplast DNA repair pathway. The dual localization of RAD52-2A in chloroplasts and the nucleus is intriguing and could be a part of the crosstalk between the nucleus and the chloroplast (reviewed in Woodson and Chory, 2008). A recent study in A. thaliana shows that protein cleavage of a chloroplast-bound protein releases a peptide that mediates chloroplast signals to the nucleus (Sun et al., 2011).

The functional assays described in this article provide evidence for the role of RAD52 in DNA recombination and repair and possibly in other pathways. This includes the partial complementation by RAD52-1A of a yeast rad52 null mutant phenotype of sensitivity to MMC (see Supplemental Figure 7 online), which suggests a similar role of the plant protein in DNA repair. In addition, several assays point to a somatic role for the A. thaliana RAD52 homologs, as demonstrated by their subcellular localization (Figure 4) and by the sensitivity (Figure 7) and reduced ICR rates (Figure 8) of mutants or RNAi line seedlings and leaves, respectively, to MMC treatment.

The reduced fertility phenotype, expressed as seeds per siliqua, in mutants and RNAi lines (Figure 6) may be caused by defective somatic and/or meiotic DNA recombination and repair. Testing this will require in-depth analysis of meiosis in these defective plants. The possibility that reduced fertility in rad52-1 was caused by the disruption of the overlapping TER1 gene seems unlikely, because despite a reduction of three- to sixfold in TER1 transcript in the rad52-1 mutant, telomere length remained unchanged (see Supplemental Figure 6 online). Moreover, proximity to a TER gene does not exist for both A. thaliana RAD52 genes, but reduced fertility was still observed in RAD52-2 knockdown lines. Furthermore, the TER1 RAD52 gene overlap is evolutionarily unstable. The absence of TER1 gene telomerase repeats, along with the conservation of only the TER1 region overlapping the RAD52-1 transcript in Arabidopsis lyrata, suggests that these loci are unlinked. Further supporting evidence can be taken from the lack of telomerase repeats (the hallmarks of TER genes) near RAD52-1 homologs in more distant species (data not shown).

The reduced fertility in rad52-2 may also be caused by somatic defects. Indeed, it was difficult to obtain a homozygous mutant; only two of 46 progeny were homozygotes, whereas the proportion of heterozygotes was as expected for Mendelian inheritance. This observation suggests partial lethality in the embryo; however, meiotic defects cannot be ruled out. In addition, the effect of RAD52-2 RNAi on ICR in young, untreated seedlings was more severe compared with rad52-1 (Figure 8). Alternatively, the partial lethality of rad52-2 could be related to RAD52-2 localization within the chloroplast, as described for other chloroplast-localized proteins (Budziszewski et al., 2001; Zuo et al., 2007; Chigri et al., 2009). In this case, maintenance of the stability of the chloroplast genome may be essential for metabolic chloroplast functioning during seed development.

A combination of rad52-1 and RAD52-2 RNAi did not decrease fertility (Figure 6) or sensitivity to MMC (Figure 7) when compared with the single lines. There are several interpretations of this finding. One possibility is that the plant RAD52, much like the human RAD52, is likely to form a multimer. The detected similarity between the two lies within a DNA binding domain, which also forms a multimer (Kagawa et al., 2002). Loss of either subunit would then cause the same phenotype. Alternatively, an unknown additional gene might compensate for the loss of one or both A. thaliana RAD52 genes.

In summary, this article outlines the sequence, structure, and suggested functional roles of plant RAD52 homologs. In contrast with the essential yeast RAD52, plant homologs bear a moderate effect on homologous recombination. In this respect, the plant RAD52 gene demonstrates a closer resemblance to human RAD52. The plant RAD52-like family shows a complex pattern of expression and localization, with multiple genes and splice variants. Further work will be required to elucidate the mechanisms through which the diverse plant RAD52 proteins affect the DNA repair and fertility phenotypes reported here.

METHODS

Bioinformatics and Phylogenetic Analysis

Sequence searches were performed on the NCBI databases using the BLAST and PSI-BLAST programs (Altschul et al., 1997). The queried databases were of protein, genomic, and transcribed (EST) sequences from the NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and Joint Genome Institute (http://genome.jgi-psf.org). ESTs were assembled using the CAP3 program (Huang and Madan, 1999). Multiple alignments were found using PSI-BLAST, Block Maker (Henikoff et al., 1995), Macaw (Schuler et al., 1991), and FSA (Bradley et al., 2009) programs (see Supplemental Data Sets 2 and 4 online). Sequence logos (Schneider and Stephens, 1990) were calculated as previously described (Henikoff et al., 1995). The conservation of the alignment positions was taken from the position-specific scoring matrix of protein multiple alignments. The conservation values are the information content of each position in bits, corresponding to the total height of each column of the sequence logos and to the coloring scheme in Supplemental Figure 2D online. Multiple alignment to multiple alignment comparisons were performed using LAMIA (Frenkel-Morgenstern et al., 2005) and Compass (Sadreyev and

Identification of Plant RAD52 Homologs 4275
calculated on the LOMETS server by the HHsearch (Soding, 2005) program. PyMol (version 0.99rc6; DeLano Scientific) was used to examine protein structures, calculate their approximate charge distribution, map the sequence conservation on the structure, and generate figures.

Phylogenetic trees were calculated in PHYML (Guindon and Gascuel, 2003), version 2.4.4, with four substitution rate categories and other default parameters to estimate gamma shape parameter, and invariant proportion. These parameters were then used with 1000 bootstrap replicates. The dendrogram was outgroup-rooted from the position of animal, fungal, and plant RAD52 sequences, calculate their approximate charge distribution, and generate figures.

Mutants

T-DNA-tagged mutants were obtained from the Arabidopsis Biological Resources Center (Alonso et al., 2003). Border cloning and sequencing for each mutant homologous line provided the corresponding gene’s sequence from both ends of the T-DNA. rad52-1 features a left border at the 5’ and a right border at the 3’, and rad52-2 has left borders at both ends of the insertion. The rad52-1 mutant SAIL_25_H08 T-DNA insertion is in the 5’ UTR, 83 bp 3’ to the putative cDNA start, and 97 bp 5’ to ATG (Figure 3; see Supplemental Figure 5 online). The rad52-2 mutant WiscDsLox303H06 T-DNA insertion is in the 5’ UTR, 25 bp 3’ to the putative cDNA start, and 36 bp 5’ to ATG.

cDNA

RAD52-1 (At1g71310) cDNA sources: At1g71310.1 (RAD52-1B.1) 531-bp-long ORF: NM_105800: S0Q36a05F (Kazusa, Japan). At1g71310.2 (RAD52-1B.2) 531-bp-long ORF: NM_179545: RAFL11-06-I22 (Riken, Japan) At1g71310.3 (RAD52-1A) 498-bp-long ORF: NM_202394: BX816488 (Institut National de la Recherche Agronomique, France).

The three publically available cDNA clones of RAD52-1 splice variants were sequenced, and their sequences were identical to the ones published in public databases. To clone RAD52-2A cDNA, we used RT-PCR, with the primers (see Supplemental Table 2 online for primers) AR52-2_RI_F and AR522A_Xho_R, on wild-type Arabidopsis thaliana Columbia 4-d-old seedling roots cDNA. To clone RAD52-2B cDNA, we used RT-PCR, with the primers AR52-2_RI_F and AR52-2_Xba_R, on wild-type A. thaliana Columbia inflorescences cDNA (sequence identical to NM_124161 ORF).

Genotoxicity Assay for Yeast Cells

The yeast MK166-52 rad52 strain (kindly provided by Martin Kupiec (Liefshitz et al., 1995) was transformed with A. thaliana RAD52 homologs that were cloned into pGMU10 (Iha and Tsurugi, 1998) under the inducible Gal1 promoter. The BY4742 strain was used as the wild-type control. MMS sensitivity was tested by growing yeast cells to stationary phase in SD-Leu-Ura (SD-Trp for the wild type) medium and then diluting them and growing them again to logarithmic phase in liquid SC-Ura medium supplemented with either 2% Glc or Gal and 1% raffinose. Yeast were counted and plated in serial dilutions on SC + Glc in the presence or absence of MMS (0.01%) and on SC + Gal in the presence or absence of MMS (0.01%). Plates were incubated at 30°C for 5 d.

Subcellular RAD52 Localization

Four-day-old A. thaliana seedlings were transformed with agrobacteria carrying fusion protein constructs using a previously described method (Li et al., 2009). A. thaliana roots were transformed with agrobacteria carrying fusion protein constructs using a previously described method (Gelvin, 2006). Transformation of A. thaliana cultured cell protoplasts was performed as previously described (Yoo et al., 2007). Tobacco (Nicotiana tabacum) BY2 cells at 20% cells per volume stage were mixed with 1/80 volume of agrobacteria carrying fusion protein constructs in logarithmic phase and visualized 3 d after transformation. RAD52-1 and RAD52-2 ORFs were fused to GFP at the C-terminal end by replacing the stop codon with an Ncol site. Sc-COX4-Mito-mCherry is the mitochondrial targeting signal of yeast COX4 fused to mCherry mt-rk CD3-991 (Nelson et al., 2007). The ViE2-NLS-mRFP, consisting of four repeats of the minimal 134 bp ViE2 NLS fused to mRFP, was a kind gift from Professor Yuval Eshed (Alvarez et al., 2009). All proteins, aside from Sc-COX4-Mito-mCherry, were flanked by the CaMV35S promoter and the octopine synthase 3’ polyA signal. Sc-COX4-Mito-mCherry was flanked by a double CaMV35S promoter and the nopalin synthase 3’ polyA signal.

Cellular localization was analyzed using a laser confocal microscope (Olympus IX81 FV1000 Spectra) equipped with an FV1000 UPLAPO 60×:O NA: 1.35 objective lens. EGF images were captured using Argon laser (excitation, 488 nm; emission, 500- to 545-nm intervals). mRFP and mCherry-labeled proteins were viewed using a diode laser (excitation, 559 nm; emission, 575- to 620-nm filter). Chlorophyll was detected using a diode laser (excitation, 638 nm; emission, 655- to 755-nm filter). 4’,6-diamidino-2-phenylindole was viewed under a diode laser (excitation, 405 nm; emission, 425- to 475-nm intervals). Imaging was performed in a line sequential mode.

RNAi Lines

A 385-bp fragment was used for RNAi silencing of RAD52-1 transcripts, which targets the first exon, starting at 134 bp 5’ to ATG and ending at 251 bp 3’. A 385-bp fragment was used for RNAi silencing of RAD52-2 transcripts, which targets the first exon, starting at 61 bp 5’ to ATG and ending at 322 bp 3’ to ATG. RNAi regions for each gene were cloned in the pKANNIBAL vector in the order of 5’ CaMV35S promoter, sense orientation, intron, antisense orientation, and 3’ octopine synthase 3’ polyA signal (Wesley et al., 2001).

Transcript Analysis by Real-Time RT-PCR

Total RNA was extracted using Tri reagent (Molecular Research Center). Three repeat experiments of eight 8-d-old seedlings of each mutant and RNAi line were evaluated for changes in RAD52 genes expression. cDNA was synthesized using Superscript II RNase H-Reverse Transcriptase (Invitrogen Life Technologies) and oligo (dT)12 primer. Reactions for quantitative real-time RT-PCR on the cDNA were performed using Applied Biosystems Power SYBR Green and run on an Applied Biosystems 7300 cycler. Reactions for each tested gene in each cDNA sample were independently repeated at least three times. Ubiquitin (At5g52760) was used as a reference for cDNA quantity. Quantification of each gene was performed using Applied Biosystems 7300 software. Relative expression of a gene in a certain sample was initially obtained by dividing the gene expression level (in arbitrary units) by the ubiquitin level (in arbitrary units). Relative expression units are shown by setting the sample with the lowest or highest expression at a value of 1. The following primers were used for analysis of RAD52 genes expression (Supplementary Table 5; see Supplemental Table 5 online). The following primers were used for analysis of specific RAD52 splice variants in different tissues and for evaluating plant responses to MMC treatment: RAD52-1A, 521AUF and 521 AUR, RAD52-1B.1, 521B1U and 521B1UR, RAD52-1B.2, 521B2UF and 521B2UR.
RAD52-2A, 522AF and 522AR. RAD52-2B primers were as indicated above. RNA was extracted from inflorescences for analysis of TER1 expression in RAD52-1 knockout lines. cDNA was synthesized using Superscript III, as described by Cifuentes-Rojas et al. (2011). TER1UF and TER1UR primers were used for the PCR (see Supplemental Table 2 online for primers sequences).

TRF Analysis
TRF was assayed as described by Cifuentes-Rojas et al. (2011).

MMC Assay
MMC assay was performed as previously described (Hartung et al., 2007), with freshly prepared MMC solutions (Sigma-Aldrich; category no. M4267).

ICR Assay
The GUS tester line (Swoboda et al., 1994) was crossed with the rad52-1 A. thaliana mutant. F3 seeds from plants homozygous for both the GUS recombination substrate and for the rad52-1 were tested. The RAD52-2 RNAi construct was transformed into the GUS tester line. T2 seeds from a line that showed fivefold reduction of RAD52-2 expression were tested. Seeds were plated on solid one-half Murashige and Skoog medium. At 8 d, seedlings were transferred to liquid one-half Murashige and Skoog medium. After 9 d, MMC was added to a final concentration of 2 μg/mL. Medium was added to the same volume as MMC in cases of “untreated” seedlings. At 16 d, seedlings were stained for GUS activity. The number of blue spots or sectors on each seedling was visually determined using a light microscope.

Seed Counting
Plants were grown, and seeds were collected from the beginning of maturation until the whole plant dried. Seed number was calculated based on 100 seeds weight.

Accession Numbers
Sequence data from this article can be found in the EMBL/GenBank data libraries under the following accession numbers. A1tg71310.1 (RAD52-1B ORF): NM_105800; SQ036a05F (Kazusa, Japan), A1tg71310.2 (RAD52-1B ORF): NM_179545: RAFL11-06-i22 (Riken, Japan), A1tg71310.3 (RAD52-1A ORF): NM_202394; BX816488 (Institut National de la Recherche Agronomique, France), A1tg47870 (RAD52-2). Accession numbers for sequences used in phylogenetic analysis can be found in Supplemental Data Sets 1 to 3 online.

Supplemental Data
The following materials are available in the online version of this article.

Supplemental Figure 1. Sequence Conservation within the Plant RAD52 Protein Family and Its Similarity to Other RAD52 Proteins.

Supplemental Figure 2. Structure Models of A. thaliana RAD52 Homologs.

Supplemental Figure 3. Nuclear Localization of RAD52-1A and RAD52-2A in A. thaliana Roots, Protoplasts, and Cotyledons.

Supplemental Figure 4. Expression Analysis of RAD52 Gene Splice Variants.

Supplemental Figure 5. A. thaliana RAD52 T-DNA Insertion Mutant Integration Sites.

Supplemental Figure 6. Analysis of TER1 Expression and Telomerase Activity in AtRAD52-1 Knockdown Lines.

Supplemental Figure 7. RAD52-1A Partly Complements a Yeast rad52 Null Mutant.

Supplemental Table 1. A. thaliana RAD52 Protein Localization Prediction Using TargetP1.1 Analysis.

Supplemental Table 2. Primers List.

Supplemental Data Set 1. Plant RAD52 Homolog Accession Numbers.

Supplemental Data Set 2. Plant RAD52 Multiple Aligned Protein Sequences.

Supplemental Data Set 3. NCBI Protein Accession Numbers of RAD52 Proteins from Various Species Used for MSA.

Supplemental Data Set 4. RAD52 Proteins from Various Species Multiple Aligned Protein Sequences.

ACKNOWLEDGMENTS
We thank Judith Korchia for the early work with the PSI BLAST search and Vladimir Kiss for his professional and kind help with the confocal microscopy. This work was supported by a European Union research grant (RECBREED). S.P. holds a Hermann and Lilly Schilling Foundation chair. A.A.L. holds the Gilbert de Botton Chair of Plant Science.

AUTHOR CONTRIBUTIONS
A.A.L. initiated, designed, and supervised the research, supervised the data analysis, and was involved in writing the article. A.S. designed and performed the experimental research and initiated the computational research, analyzed the data, and was involved in writing the article. S.P. performed the experimental research dealing with yeast complementation experiments. N.A.-R. performed research relating to MMC and ICR experiments.

Received September 15, 2011; revised November 10, 2011; accepted December 8, 2011; published December 27, 2011.

REFERENCES

Rowan, B.A., Oldenburg, D.J., and Bendich, A.J. (2010). RecA main-

