Sphingolipids in the Root Play an Important Role in Regulating the Leaf Ionome in Arabidopsis thaliana

Dai-Yin Chao,a,1 Kenneth Gable,b,1 Ming Chen,c Ivan Baxter,a,2 Charles R. Dietrich,c Edgar B. Cahoon,c,3 Mary Lou Guerinot,d Brett Lahner,a Shiyou Lu,b Jonathan E. Markham,c Joe Morrissey,d Gongshe Han,b Sita D. Gupta,b Jeffrey M. Harmon,b Jan G. Jaworski,c Teresa M. Dunn,b and David E. Salta,4

a Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906
b Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
c Donald Danforth Plant Science Center, St. Louis, Missouri 63132
d Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
e Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814

Sphingolipid synthesis is initiated by condensation of Ser with palmitoyl-CoA producing 3-ketodihydrospinganine (3-KDS), which is reduced by a 3-KDS reductase to dihydrospinganine. Ser palmitoyltransferase is essential for plant viability. Arabidopsis thaliana contains two genes (At3g06060/TSC10A and At5g19200/TSC10B) encoding proteins with significant similarity to the yeast 3-KDS reductase, Tsc10p. Heterologous expression in yeast of either Arabidopsis gene restored 3-KDS reductase activity to the yeast tsc10Δ mutant, confirming both as bona fide 3-KDS reductase genes. Consistent with sphingolipids having essential functions in plants, double mutant progeny lacking both genes were not recovered from crosses of single tsc10a and tsc10b mutants. Although the 3-KDS reductase genes are functionally redundant and ubiquitously expressed in Arabidopsis, 3-KDS reductase activity was reduced to 10% of wild-type levels in the loss-of-function tsc10a mutant, leading to an altered sphingolipid profile. This perturbation of sphingolipid biosynthesis in the Arabidopsis tsc10a mutant leads to an altered leaf ionome, including increases in Na, K, and Rb and decreases in Mg, Ca, Fe, and Mo. Reciprocal grafting revealed that these changes in the leaf ionome are driven by the root and are associated with increases in root suberin and alterations in Fe homeostasis.

INTRODUCTION

The sphingolipids are a diverse class of membrane lipids with essential functions in all eukaryotic and some prokaryotic cells. It is estimated that sphingolipids constitute up to 20 to 30% of the tonoplast and plasma membrane lipid in plants (Lynch and Dunn, 2004), and although their roles are not yet defined, recent studies indicate that they have critical functions. For example, sphingolipids are reported to be enriched along with sterols in microdomains or lipid rafts (Mongrand et al., 2004; Borner et al., 2005). In addition, sphingolipids have been implicated in the regulation of cellular processes such as abscisic acid–dependent guard cell closure and programmed cell death (Wang et al., 1996, 2008; Ng et al., 2001; Spassieva et al., 2002; Coursol et al., 2003, 2005; Liang et al., 2003; Townley et al., 2005; Shi et al., 2007). Here, we provide evidence that sphingolipids also play an important role in mineral ion homeostasis.

With the exception of carbon and oxygen, plants must primarily acquire all the mineral nutrients required for growth from the soil. To achieve this, plants have evolved a complex system of specialized tissues, cellular structures, and transport molecules. This system directs the acquisition of mineral ions from the soil solution, and in certain cases, such as Fe, this also involves solubilization from the soil matrix. Soluble ions are transported across the surface of the root, in either a passive process with ions moving through the porous cell wall of the root cells or an active process with ions moving symplastically through the cells of the root. Once ions have entered the root, they can be either stored or exported to the shoot. Ion transport to the shoot usually takes place via the xylem, and plants have tight control over ions entering the shoot via the xylem through solute release and absorption by xylem parenchyma cells. Once in the leaf, ions are unloaded from the xylem and distributed throughout the leaf tissue. Ions also move via the phloem. Many steps in this complex pathway require that ions traverse various selectively permeable cell wall formation (Borner et al., 2005). In addition, sphingolipid metabolites, including long-chain base-1-phosphates and ceramides, have been implicated in the regulation of cellular processes such as abscisic acid–dependent guard cell closure and programmed cell death (Wang et al., 1996, 2008; Ng et al., 2001; Spassieva et al., 2002; Coursol et al., 2003, 2005; Liang et al., 2003; Townley et al., 2005; Shi et al., 2007). Here, we provide evidence that sphingolipids also play an important role in mineral ion homeostasis.
membranes, including the plasma membrane and various endomembrane systems. Such membrane transport involves ion transport proteins that are selective for specific ions, embedded within specific membranes, and are sometimes organized asymmetrically within the membrane. Furthermore, it is important that this system is regulated to integrate ion transport with both the availability of the ion in the soil and the mineral nutrient requirements of the plant as it grows and develops. Such integration is known to happen through regulation at various organizational levels, including transcriptionally and posttranslationally (for examples, see reviews by Chen et al., 2008; Maurel et al., 2009; Mikosch and Homann, 2009; Ward et al., 2009). However, many aspects of these regulatory circuits remain to be characterized. The application of high-throughput elemental profiling of mutantized populations of *Arabidopsis thaliana*, coupled to linkage mapping, for the identification of genes involved in regulating plant mineral ion homeostasis has been termed ionomics (Salt et al., 2008). Such an approach has been used to successfully clone genes involved in regulating the ionome (Nublat et al., 2001; Baxter et al., 2009; Tian et al., 2010), and with the development of new genomic-based tools for mapping (for example Hodges et al., 2007; Schneeberger et al., 2009), this forward genetic approach is likely to be used increasingly in the future.

Previously, we reported the identification of an *Arabidopsis* ionomic mutant with reduced leaf Ca and Mo, named 7113 (Lahner et al., 2003). Further investigations reported here revealed that this mutant has reduced leaf Mg, Ca, Fe, and Mo and elevated leaf Na, K, and Rb (a chemical analog of K) and that the mutation causing this ionomic phenotype generates a loss-of-function allele of a gene (*At3g06060*) that shows similarity to the yeast 3-ketodihydrosphinganine (3-KDS) reductase involved in sphingolipid biosynthesis. In both yeast and *Arabidopsis*, the enzyme serine palmitoyltransferase (SPT) is required to catalyze the condensation of Ser and palmitoyl-CoA in the first committed step in sphingolipid biosynthesis (Tamura et al., 2001; Chen et al., 2006; Dietrich et al., 2008; Teng et al., 2008). In yeast, 3-KDS reductase is then required to catalyze the NADPH-dependent reduction of 3-KDS to dihydrosphinganine (DHS) (Beeler et al., 1998). Sequence similarity searches have revealed the presence of two candidate 3-KDS reductase genes in *Arabidopsis*, *At3g06060* and *At5g19200*. Microarray data indicated that both genes are ubiquitously expressed but that the *At3g06060* gene is expressed at higher levels than the *At5g19200* gene (Zimmermann et al., 2004).

Here, we report that both *At3g06060* and *At5g19200* genes encode functionally redundant 3-KDS reductases required for sphingolipid synthesis in *Arabidopsis*. Furthermore, our studies indicate that sphingolipids play a critical role in the mineral ion homeostasis, most likely through their involvement in the ion transport functionalities of membrane systems in the root.

RESULTS

Alterations in the Leaf Ionomics of tsc10a

The *Arabidopsis* leaf ionomic mutant 7113, now termed tsc10a-1, was originally reported to have reduced leaf concentrations of Ca and Mo compared with wild-type plants (Lahner et al., 2003). Here, we extend this observation, showing that the mutant has significant (P ≤ 0.01) increases in leaf concentrations of Na, K, and Rb and reductions in Ca, Mg, Fe, and Mo (Table 1) determined using a single-factor mixed effect model analysis of variance (ANOVA) with a Benjamini-Hochberg multiple testing correction. We further imposed the requirement that a change in concentration of an element be significant in multiple independent alleles. Using this stringent criterion, we established that three independent alleles of tsc10a (tsc10a-1, tsc10a-2, and tsc10a-3) all showed significant differences from the wild type in Na, Mg, K, Ca, Fe, Rb, and Mo (P ≤ 0.01). We also observed that all three alleles of tsc10a showed reductions in both leaf concentrations of Cu and Ni but at a lower significance level (P ≤ 0.05) (Table 1). Even though the leaf ionomes of tsc10a-1, tsc10a-2, and tsc10a-3 are significantly altered compared with wild-type plants, we observed no major growth defects. However, in the TSC10A loss-of-function mutants, we observe a reduction of root growth on media containing sucrose (see Supplemental Figure 1 online), increased frequency of tricotyledons (see Supplemental Figure 2 online), altered flower morphology (see Supplemental Figure 3A online), and reduced hypocotyl elongation in dark-grown seedlings (see Supplemental Figure 3B online).

Mapping of the Causal DNA Polymorphism in tsc10a

Ionomic analysis of leaf tissue sampled from F1 plants derived from the backcross Columbia-0 (Col-0) × tsc10a-1 revealed that all 36 F1 plants showed a wild-type ionomic phenotype. These data support the conclusion that the ionomic phenotype of tsc10a-1 is caused by a recessive mutation. Data can be found at www.ionomicshub.org in tray 1307.

To map the causal locus of tsc10a-1, an outcross to *Arabidopsis Landsberg erecta* (Ler-0) was made and the ionomic phenotype of 277 F2 plants determined. The percentage of difference from Col-0 for leaf Mg and Ca was found to be highly correlated in the tsc10a-1 × Ler-0 F2 plants (correlation coefficient = 0.92), and the mutant low leaf Mg and Ca phenotype was observed in 55 of these 277 F2 plants (using a cutoff of percentage change from Col-0 wild type for Mg + Ca ≤ −20%), supporting our conclusion that this phenotype is caused by a single recessive locus (see Supplemental Figure 4 online). To obtain a rough map position, a bulk segregant analysis experiment (Michelmore et al., 1991) was performed with microarray detection of genetic markers (Borevitz et al., 2003; Rus et al., 2006; Baxter et al., 2008a, 2009), using the tsc10a-1 × Ler-0 F2 plants. Plants with the lowest leaf Mg and Ca content (n = 31), similar to tsc10a-1, and plants with Mg and Ca leaf contents similar to Col-0 (n = 31) were pooled separately and genomic DNA from each pool hybridized to the Affymetrix *Arabidopsis* ATH1 microarray. Using the oligonucleotide probes on the DNA microarray that show differential hybridization between Ler-0 and Col-0 as genetic markers (single feature polymorphisms [SFPs]), the locus responsible for the leaf ionomic phenotype in tsc10a-1 was mapped to the top 4 Mb on chromosome 3 (see Supplemental Figure 5A online). Based on this rough map position and using a combination of genotyping and confirmation
of the leaf ionomic phenotype in the F3 generation, we were able to initially map the causal mutation to a region of 400 kb between simple sequence length polymorphic (SSLP) markers T1540k and T1.9M using 341 (tsc10a-1 × Ler-0) F2 plants (see Supplemental Figure 5B online). Fine mapping within this region using 1279 (tsc10a-1 × Ler-0) F2 plants narrowed down the location of the causal mutation in tsc10a-1 to a 30-kb interval between markers T1818K and T1.9M using 341 (tsc10a-1 × Ler-0) F2 plants (see Supplemental Figure 5B online). DNA sequencing of this 30-kb region revealed a G-to-T single nucleotide polymorphism in the native promoter fully complements the mutant leaf ionomic phenotype of tsc10a-1 back to the wild type in three independently transformed lines (Figure 1B). Furthermore, quantitative RT-PCR (qRT-PCR) confirmed that expression of the At3g06060 gene is reduced in tsc10a-1 consistent with the occurrence of nonsense-mediated mRNA decay and also in both the T-DNAinsertional alleles tsc10a-2 and tsc10a-3 (Figure 2A). Taken together, this evidence establishes that loss of function of At3g06060 is driving the observed leaf ionomic phenotype.

Sequence similarity searches using the predicted amino acid sequence of At3g06060 as the query identified the yeast 3-KDS reductase (temperature-sensitive Csg2 suppressor protein [Tsc10p]) (see Supplemental Figure 6A online), and based on this homology, we named the At3g06060 gene TSC10A. Although sequence similarity of the encoded TSC10A protein to yeast Tsc10p is low, being ~18% identical and 40% similar, the sequence similarity extends over the length of the proteins and includes critical residues that identify them as members of the family of enzymes known as the short-chain reductases (SDRs) (Kavanagh et al., 2008). While there are many predicted SDRs in Arabidopsis, the remaining members of the family have more limited similarity to Tsc10p. Moreover, the protein encoded by At3g06060 has higher sequence similarity to the mammalian 3-KDS reductase FVT1 (32% identity; 55% similarity) than to Tsc10p (see Supplemental Figure 6A online).

Analysis of the Arabidopsis genome revealed a second gene, At5g19200, on chromosome 5 with a similarity of 86.5% to the predicted amino acid sequence of TSC10A (see Supplemental
We further imposed the requirement that a change in concentration of an element be significant in multiple independent alleles. Using this stringent criterion, we established that both independent alleles of tsc10b (tsc10b-1 and tsc10b-2) showed significant differences from the wild type in Li, B, K, Ca, Fe, Rb, Mo, and Cd ($P \leq 0.01$) (Table 2).

Loss of Function of Both TSC10A and TSC10B Is Lethal in Arabidopsis

When grown in standard growth chamber conditions, plants with disruption of either TSC10A or TSC10B have no major growth phenotype. Because 3-KDS reductase activity is expected to be required for synthesis of sphingolipids, known to be essential for plant viability (Chen et al., 2006; Dietrich et al., 2008), this presumably reflects functional redundancy of the two putative 3-KDS reductases. This was examined further by generation of double mutants for the two 3-KDS genes. For these studies, crosses were made between tsc10a-2 and tsc10b-2 mutants as well as tsc10a-3 and tsc10b-2 mutants to generate F1 plants. PCR genotyping of 96 plants from the segregated F2 population obtained from selfing of F1 plants from the tsc10a-1 × tsc10b-2 cross did not reveal any homozygous double mutant plants. To further establish that the double mutants were not viable, an additional 96 plants were genotyped from the progeny of the tsc10a-1/tsc10a-2 tsc10b-2/ tsc10b-2/+ selfed plants. If the two 3-KDS genes were not essential, one-quarter of this population would be expected to be homozygous for knockout of both genes. Instead, no homozygous double mutants were obtained, indicating that the 3-KDS genes encode an essential activity in Arabidopsis. Consistent with this, no double mutant progeny were recovered among 160 genotyped plants from a segregating F2 population from a tsc10a-3 × tsc10b-2 cross. To unequivocally establish that the two 3-KDS genes are essential, genetic complementation studies were conducted. For these experiments, tsc10a-2/tsc10a-2 tsc10b-2/ tsc10b-2/+ plants were transformed with a construct carrying a wild-type copy of the TSC10A gene. While no homozygous double mutants were confirmed in the T1 plants, plants disrupted in both genes but carrying the transgenic genomic TSC10A gene in the T2 plants were recovered (data not shown). Overall, these results indicate that TSC10A and TSC10B are functionally redundant genes, but mutation of both genes results in loss of viability. The latter finding is consistent with results from yeast that have established that 3-KDS reductase inactivation is lethal.

TSC10A and TSC10B in Arabidopsis Are Expressed throughout the Plant

To help understand how loss of function of TSC10A could cause the observed leaf ionomic phenotype, we examined tissue expression patterns of both TSC10A and TSC10B using qRT-PCR. We observed that both genes are expressed in seedlings and in root, leaf, stem, flower, and developing siliques (Figure 3), with TSC10A being expressed more highly than TSC10B in all tissues in which it was measured. Furthermore, microarray data support this plant-wide expression of both genes (Zimmermann et al., 2004).
The Arabidopsis TSC10A and TSC10B Genes Substitute for Yeast TSC10

The candidate 3-KDS reductases from Arabidopsis (TSC10A and TSC10B) were initially tested for function by determining whether their expression reversed the phenotypes associated with yeast tsc10 mutants. For these functional complementation studies, cDNA fragments encoding the full-length Arabidopsis proteins were PCR amplified and inserted into the yeast pADH plasmid for constitutive expression with an N-terminal hemagglutinin (HA) tag. The yeast tsc10-1 mutant with a temperature-sensitive mutation in the essential TSC10 gene (Beeler et al., 1998; Dunn et al., 2000) and the tsc10Δ mutant were used for the functional complementation studies. Both strains have defects in 3-KDS reductase required for catalysis of the reduction of 3-KDS to dihydrosphingosine, the second step in sphingolipid biosynthesis (Figure 4A). Expression of either TSC10A or TSC10B from Arabidopsis restored growth to the yeast tsc10-1 mutant at the restrictive temperature (Figure 4B). Although the tsc10Δ mutation is lethal, the null mutants can be rescued by chemical complementation with long-chain bases (LCBs), such as phytosphingosine (PHS). Expression of either TSC10A or TSC10B from Arabidopsis also reversed the LCB requirement of the tsc10Δ mutant cells (Figure 4B). We previously reported that the

Table 2. Leaf Element Profile of Wild-Type (Col-0) and tsc10b Alleles

<table>
<thead>
<tr>
<th>Element</th>
<th>Content (mg g⁻¹ Dry Weight)</th>
<th>Percentage Difference from the Wild Type</th>
<th>P Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Col-0</td>
<td>tsc10b-1</td>
<td>tsc10b-2</td>
</tr>
<tr>
<td>Li</td>
<td>8.94 ± 2.93</td>
<td>13.07 ± 3.98</td>
<td>14.81 ± 3.68</td>
</tr>
<tr>
<td>B</td>
<td>137.96 ± 21.73</td>
<td>107.72 ± 13.34</td>
<td>99.72 ± 8.06</td>
</tr>
<tr>
<td>Na</td>
<td>704.14 ± 96.74</td>
<td>852.79 ± 175.00</td>
<td>839.96 ± 97.22</td>
</tr>
<tr>
<td>Mg</td>
<td>6,678.70 ± 306.29</td>
<td>6,729.38 ± 299.69</td>
<td>6,779.26 ± 452.37</td>
</tr>
<tr>
<td>P</td>
<td>7,459.84 ± 706.62</td>
<td>6,622.51 ± 707.24</td>
<td>6,671.09 ± 844.73</td>
</tr>
<tr>
<td>S</td>
<td>7,442.30 ± 884.48</td>
<td>7,519.10 ± 789.05</td>
<td>7,911.46 ± 989.18</td>
</tr>
<tr>
<td>K</td>
<td>40,998.90 ± 4,120.59</td>
<td>26,096.86 ± 3,457.08</td>
<td>28,343.63 ± 4,878.71</td>
</tr>
<tr>
<td>Ca</td>
<td>24,511.29 ± 1,801.65</td>
<td>28,938.80 ± 1,769.44</td>
<td>28,253.75 ± 2,396.99</td>
</tr>
<tr>
<td>Mn</td>
<td>78.40 ± 29.60</td>
<td>75.71 ± 31.23</td>
<td>62.41 ± 15.62</td>
</tr>
<tr>
<td>Fe</td>
<td>75.69 ± 3.31</td>
<td>71.52 ± 3.75</td>
<td>71.72 ± 2.72</td>
</tr>
<tr>
<td>Co</td>
<td>0.54 ± 0.08</td>
<td>0.49 ± 0.06</td>
<td>0.47 ± 0.06</td>
</tr>
<tr>
<td>Ni</td>
<td>0.39 ± 0.10</td>
<td>0.42 ± 0.05</td>
<td>0.42 ± 0.05</td>
</tr>
<tr>
<td>Cu</td>
<td>6.73 ± 1.02</td>
<td>6.03 ± 0.71</td>
<td>6.00 ± 0.56</td>
</tr>
<tr>
<td>Zn</td>
<td>73.08 ± 10.77</td>
<td>81.86 ± 9.43</td>
<td>75.01 ± 5.78</td>
</tr>
<tr>
<td>As</td>
<td>0.94 ± 0.34</td>
<td>0.67 ± 0.18</td>
<td>0.70 ± 0.21</td>
</tr>
<tr>
<td>Se</td>
<td>3.47 ± 1.70</td>
<td>3.83 ± 0.96</td>
<td>5.18 ± 1.23</td>
</tr>
<tr>
<td>Rb</td>
<td>62.18 ± 12.63</td>
<td>41.34 ± 6.68</td>
<td>45.92 ± 9.01</td>
</tr>
<tr>
<td>Cd</td>
<td>12.05 ± 2.36</td>
<td>19.59 ± 3.16</td>
<td>19.27 ± 3.46</td>
</tr>
<tr>
<td>Mo</td>
<td>0.55 ± 0.08</td>
<td>0.68 ± 0.05</td>
<td>0.66 ± 0.08</td>
</tr>
</tbody>
</table>

Data represent the mean of 12 independent plants per genotype ± sd. Data in bold represent elements with a significant difference (P < 0.01) between the mutant and the wild type in both independent alleles. The raw elemental concentrations for individual plant samples are available at www.ionomicshub.org in experimental tray 1860. ns, not significant; asterisk, inverse transformed after significant Levene’s homogeneity of variance test.
yeast tsc10-1 mutant, deficient in 3-KDS reductase, accumulates 3-KDS, an intermediate that is not detected in wild-type yeast (Figure 4C). Here, we observe that expression of either TSC10A or TSC10B from Arabidopsis reduced this accumulation of 3-KDS in the yeast tsc10-1 mutant (Figure 4C), providing additional evidence that both TSC10A and TSC10B from Arabidopsis encode functional 3-KDS reductases.

3-KDS Reductase Assays Reveal That TSC10A from Arabidopsis Lacks Stereospecificity

To further characterize the Arabidopsis TSC10 proteins, their in vitro 3-KDS reductase activities were investigated. For these experiments [14C]-3-KDS was prepared using a purified bacterial SPT enzyme from Sphingomonas paucimobilis. Unlike the eukaryotic SPT enzymes, bacterial SPT is a soluble homodimeric enzyme that can be used to generate large quantities of [14C]-3-KDS for use in the 3-KDS reductase assay (Gupta et al., 2009). Purified [14C]-3-KDS was added to microsomes prepared from yeast tsc10A mutant cells expressing the yeast HA-tagged-Tsc10p, or the Arabidopsis HA-TSC10A or HA-TSC10B and its conversion to [14C]-DHS was measured. Microsomes prepared from yeast expressing the yeast HA-Tsc10p or the Arabidopsis HA-TSC10A or HA-TSC10B all contained HA-tagged proteins of the predicted molecular mass (~40 kD) detected by immunoblotting using anti-HA antibodies (Figure 5A). Microsomes prepared from tsc10A mutant cells harboring the empty pADH1 vector displayed no 3-KDS reductase activity, whereas those expressing the yeast Tsc10p and the Arabidopsis TSC10A or TSC10B showed an NADPH-dependent conversion of [14C]-3-KDS to [14C]-DHS (Figure 5B). Because each of the proteins was HA tagged, it was possible to estimate the abundance of each 3-KDS reductase by comparison to purified HA-tagged bacterial SPT (Figure 5A) and thus to estimate the specific activities of the yeast and Arabidopsis enzymes. From these analyses, we concluded that the yeast Tsc10p has a specific activity of ~30 μmol mg⁻¹ min⁻¹ and the Arabidopsis TSC10A of ~85 μmol mg⁻¹ min⁻¹ and TSC10B of ~500 μmol mg⁻¹ min⁻¹. Both of the Arabidopsis 3-KDS reductases displayed higher activities with NADPH as cofactor, but in contrast with yeast Tsc10p, also used NADH (Figures 5C and 5D). To assess substrate specificity, [14C]-3-KDS with different chain lengths was prepared by incubating the bacterial SPT with [14C]-Ser and acyl-CoAs of different chain lengths. Only the reduction of C18-[14C]-3-KDS and C20-[14C]-3-KDS by the Arabidopsis enzymes is shown in Figure 5C, but all three enzymes efficiently reduced 3-KDSs with chain lengths from C12 to C20.

Thin layer chromatograms of the products of the enzyme assays revealed that the Arabidopsis TSC10A catalyzed the conversion of 3-KDS to two products (note the doublet in Figure 5C) when NADPH was used as cofactor. This suggested that the Arabidopsis TSC10A enzyme transferred the hydride from NADPH to either face of the ketone substrate, thereby forming both D-erythro and L-threo DHS. Consistent with this hypothesis, chemical reduction of 3-KDS with sodium borohydride (NaBH4) produced products with the same mobilities as those formed by TSC10A (Figure 5C). By contrast, the Arabidopsis TSC10B and the yeast Tsc10p appear to be more stereoselective, yielding a single DHS product. To directly investigate whether the Arabidopsis TSC10A produced both stereoisomers, the products of the reactions were extracted, derivatized with AccQ, and analyzed along with commercially available standards by HPLC. As shown in Figure 5E, the two products formed by the Arabidopsis TSC10A did indeed coelute with the L-threo and D-erythro standards and with the products produced by chemical reduction of 3-KDS with NaBH4. We therefore conclude that the Arabidopsis TSC10A enzyme produced both the physiologically relevant D-erythro DHS, as well as L-threo DHS, also known as safinogol, a compound that is in clinical trials as a potential anticancer drug (Morales et al., 2007).

The Arabidopsis 3-KDS Reductases Are Localized to the Endoplasmic Reticulum and Have an N-Terminal Membrane-Spanning Domain That Is Not Present in Yeast Tsc10p

To understand further the function of the Arabidopsis TSC10 proteins, we examined their subcellular localization. We prepared a cDNA construct that when translated would generate a chimeric protein with the green fluorescent protein (GFP) fused to the N terminus of TSC10A (GFP-TSC10A) and TSC10B (GFP-TSC10B). Protoplasts isolated from tobacco (Nicotiana tabacum) BY-2 cells were cotransformed with GFP-TSC10A or GFP-TSC10B and the endoplasmic reticulum (ER) marker CD3-959 (Nelson et al., 2007) fused with the red fluorescent protein (mCherry), and in these cells both green and red fluorescence was observed to colocalize (Figures 6A and 6B). Such colocalization of green fluorescence from GFP-TSC10A and GFP-TSC10B with the red fluorescence from the bona fide ER marker CD3-959 confirms the ER localization of both the TSC10A and TSC10B proteins. Expression of GFP-TSC10A was also found to complement the leaf iodionic phenotype of tsc10a-1, supporting the conclusion that the observed ER localization of the TSC10 proteins is functional.
Both Tsc10p from yeast and TSC10A and TSC10B from *Arabidopsis* are localized at the ER, catalyze the same reaction, and have the conserved predicted catalytic residues (see Supplemental Figure 6A online) that are expected to lie on the cytoplasmic face of the ER membrane. In addition, these proteins have two potential transmembrane domains (TMDs) near their C termini. However, both the *Arabidopsis* TSC10A and TSC10B enzymes have different predicted membrane topologies compared with the yeast Tsc10p. In particular, the *Arabidopsis* 3-KDS reductases have a hydrophobic N-terminal extension that is predicted to contain an additional TMD that would place the N termini of the *Arabidopsis* proteins in the ER lumen (see Supplemental Figure 6A online). To experimentally address this, glycosylation reporter cassettes (GC) were inserted at the N and C termini of the yeast Tsc10p and the *Arabidopsis* TSC10A. Each cassette consisted of a 53–amino acid domain comprising residues 80 to 133 of yeast invertase (Suc2p) that contains three NXS/T sites for N-linked glycosylation (Nakajima et al., 1994). In the case of Tsc10p, no glycosylation was observed on either the N- or C-terminally located GC cassette (Figure 6C), suggesting that the protein has an even number of membrane-spanning domains. Several algorithms predict the presence of two TMDs located between 255 to 275 and 285 to 305, and in each case, they also predict a third TMD at 160 to 180. However, since this region contains the predicted catalytic residues (see Supplemental Figure 6A online) that are characteristic of the SDRs, it is not likely to be in the membrane. In addition, the presence of three TMDs is inconsistent with the glycosylation data, making it likely that the two predicted membrane-spanning domains in the C-terminal region of the yeast Tsc10p tether the protein to the membrane with both ends located in the cytoplasm. In contrast with the cytoplasmic

Figure 4. Both TSC10A and TSC10B Function as 3-Ketosphinganine Reductases.

(A) Pathway for sphingolipid biosynthesis in plants.

(B) Yeast functional complementation. Expression of yeast TSC10 and *Arabidopsis* TSC10A or TSC10B reverses the temperature-sensitive phenotype of the yeast tsc10-1 mutant and the LCB requirement of the yeast tsc10Δ mutant.

(C) The yeast tsc10-1 mutant cells accumulate 3-KDS. The empty expression vector (pADH1) does not alter this phenotype, but plasmids expressing yeast TSC10 or either *Arabidopsis* TSC10 gene reverse the accumulation of 3-KDS. The PHS, DHS, and 3-KDS standards (outside lanes) migrated to the indicated positions. DHS Rf value = 0.3 and 3-KDS Rf value = 0.7. Phosphatidylserine and phosphatidylethanolamine, coextracted with the LCBs, also stain with ninhydrin.
Figure 5. Enzymological Analysis of Arabidopsis TSC10.

(A) Microsomal protein (10, 5, or 1 μg) preparations from tsc10Δ mutants expressing HA-Tsc10p, HA-TSC10A, or HA-TSC10B. The proteins were resolved by SDS-PAGE and determined by immunoblotting using HA antibody. The purified HA-tagged bacterial SPT protein (HA-SmSPT) was used as a control.

(B) In vitro activities of Arabidopsis TSC10 and yeast TSC10. Microsomal proteins (40 μg) from (A) were added to a reaction mix containing NADPH and 14C-3-KDS. At the indicated times, aliquots were removed and the LCBs extracted and resolved by thin layer chromatography. The amount of DHS formed was quantitated by phosphorimaging and specific activities calculated. DHS RF value = 0.3 and 3-KDS RF value = 0.7.

(C) and (D) The dependency of Arabidopsis TSC10 and yeast TSC10 activity on NADPH. Sodium borohydride (NaBH4) was used as a positive control. DHS RF value = 0.3 and 3-KDS RF value = 0.7.

(E) Stereospecificity of Arabidopsis TSC10. LCBs were extracted following reduction of 3-KDS with Tsc10p, TSC10A, or TSC10B, derivatized with AccQ, and analyzed by HPLC. As controls, a mixture of L-threo- and D-erythro-DHS, L-threo-DHS, and NaBH4-reduced 3-KDS were also AccQ derivatized for HPLC analysis.
localization of the N terminus of the yeast Tsc10p, the N terminus of Arabidopsis TSC10A is clearly luminal since the GC cassette inserted after codon 2 was glycosylated. As shown in Figure 6D, treatment of solubilized membranes with EndoH increased the electrophoretic mobility of TSC10AGC@313. Similar to yeast Tsc10p, the C terminus of the Arabidopsis TSC10A is apparently cytoplasmic since the electrophoretic mobility of TSC10AGC@327, with a GC cassette at its C terminus, was not affected by EndoH (Figure 6D). The GC cassette at the N terminus of Arabidopsis TSC10B also was glycosylated (Figure 6D), and although we did not experimentally demonstrate that the C terminus of TSC10B is cytoplasmic, we presume that both proteins are oriented with their N termini in the lumen and their C termini in the cytoplasm. These results imply the presence of an additional membrane-spanning domain in the N-terminal extension of the Arabidopsis proteins (see Supplemental Figure 6A online). Thus, while the C-terminal regions of the Arabidopsis TSC10A and TSC10B are topologically similar to the yeast Tsc10p, the N-terminal regions of the Arabidopsis proteins are clearly distinct from the yeast protein.

3-KDS Reductase Activity and Sphingolipid Biosynthesis Are Perturbed in the tsc10 Arabidopsis Mutants

To verify the function of TSC10A and TSC10B in Arabidopsis, we measured the 3-KDS reductase activities in tsc10a-2 and tsc10b-2 compared with wild-type plants. Microsomes were prepared from whole-plant extracts of 8-week-old plants grown under short-day conditions and 3-KDS reductase activity determined by measuring the conversion of [3H]-3-KDS to [3H]-DHS. Microsomal membranes prepared from tsc10a-2 mutant plants lacking expression of TSC10A showed virtually no NADPH-dependent 3-KDS reductase activity, compared with wild-type plants (Figure 7), indicating that the TSC10A gene encodes the majority of all the 3-KDS reductase activity in Arabidopsis. Interestingly, microsomal membranes prepared from tsc10b-2 mutant plants lacking expression of TSC10B showed elevated 3-KDS reductase activity compared with wild-type plants (Figure 7). Elevated 3-KDS reductase activity in tsc10b-2 is consistent with both the elevated level of TSC10A expression observed in this mutant (Figure 2A) and its leaf ionomic phenotype, which is opposite to tsc10a (Table 2).

To further investigate the effect of loss of 3-KDS reductase activity on sphingolipid biosynthesis, we performed profiling of the sphingolipid content of 7-d-old seedlings of wild-type (Col-0), tsc10a-2, and tsc10b-2 mutants grown under light and dark conditions. The rational for choosing these experimental conditions is that tsc10a-2 displays reduced hypocotyl elongation compared with the wild type under these conditions (see Supplemental Figure 3B online), suggesting that the defect in sphingolipid biochemistry may be most pronounced under these growth conditions. As expected, 3-KDS reductase-deficient plants showed an accumulation of a small amount of 3-KDS (Figure 8A), which was largely converted to 4-hydroxy-3-KDS, presumably through the action of sphingoid base hydroxylase. Despite the reduction in 3-KDS reductase activity, free

![Figure 6](image-url) Subcellular Distribution and Membrane Topologies of Arabidopsis TSC10.

TSC10A and TSC10B were localized on the ER membrane as determined by cotransient expression of GFP-TSC10A (A) or GFP-TSC10B (B) with the ER marker CD3-959-mCherry. Transient expression was performed in protoplasts of tobacco BY-2 cells. The membrane topologies of Arabidopsis TSC10A and TSC10B are different from yeast Tsc10p. Both the N and C termini of yeast Tsc10p are cytoplasmic (C), while N termini of Arabidopsis TSC10A and TSC10B are luminal (D). A GC was inserted in-frame into yeast Tsc10p and Arabidopsis TSC10A and TSC10B after the initiator Met (GC@2) or before the stop codon of Tsc10p (GC@313) or TSC10A (GC@327), and the fusion proteins were expressed in tsc10a yeast mutant cells. The glycosylation status of the proteins was assessed by incubating microsomal protein with or without endoH and analyzing 15 μg by immunoblotting using anti-HA antibodies.

![Figure 7](image-url) 3-KS Reductase Activity in the Arabidopsis Mutants tsc10a and tsc10b and Wild-Type Col-0.

Microsomes were prepared from the wild type (WT), tsc10a-2, and tsc10b-2 and NADPH-dependent 3-KDS reductase activities measured. For assays done in the presence of NADPH, data represent means (n = 3) ± se. Assays done in the absence of NADPH were performed at n = 1.
phytosphingosine (t18:0) and phytosphingosine-1-phosphate (t18:0-P) were accumulated to higher levels than wild-type plants grown under the same conditions (Figure 8A). Analysis of the complex sphingolipid content (Figure 8B) showed that free ceramide and hydroxykeramide accumulated to higher levels in tsc10a-2 than in wild-type plants at the cost of glucosylceramide (GlcCer), suggesting a specific block in GlcCer synthesis as the level of glycosyl inositolphosphoceramide was unaffected. The mechanism by which decreased 3-KDS reductase activity leads to inhibition of GlcCer synthesis is not known but may be a result of pathway inhibition by the accumulated (4-hydroxy)-3-KDS or an acylated derivative thereof. These data point to a significant alteration of sphingolipid metabolism in tissues of the tsc10a-2 mutant.

Reduced 3-KDS Reductase Activity in Arabidopsis Roots Drives Changes in the Leaf Ionom

TSC10A in Arabidopsis is expressed in both roots and shoots (Figures 2A and 3). To determine in which tissue loss of 3-KDS

Figure 8. LCB and Complex Sphingolipid Content of tsc10a-2, tsc10b-2, and the Wild Type.

(A) LCBs and LCB phosphates (LCB-P) were extracted from etiolated hypocotyls of wild-type and mutant plants. LCBs analyzed included 3-KDS, DHS (d18:0), DHS:1Δ4 (d18:1), DHS:2Δ4,8 (d18:2), PHS (t18:0), PHS:1Δ8, (t18:1) and their phosphates. dw, dry weight.

(B) Analysis of the complex sphingolipids ceramide, hydroxykeramide, glucosylceramide, and glycosyl inositolphosphoceramide (GIPC). Data represent the mean of five biological replicates per genotype ± SE. Letters indicate statistically different groups using one-way ANOVA with groupings by Tukey’s HSD using a 95% confidence interval.
reductase activity causes the leaf ionomic phenotype observed in tsc10a, we performed reciprocal root and shoot grafting experiments between the wild type and tsc10a-1. Self-grafted wild-type and tsc10a plants showed the same leaf ionomics profile as nongrafted plants (Figure 9A), establishing that grafting did not significantly affect the leaf concentrations of Na, Mg, K, Ca, Fe, Rb, and Mo, the elements known to be altered in tsc10a. Furthermore, grafted plants with a wild-type shoot and tsc10a-1 mutant root had a leaf ionome indistinguishable from the tsc10a-1 (Figure 9A) for Na, Mg, K, Ca, Fe, Rb, and Mo. This contrasts with grafted plants with a tsc10a-1 shoot and wild-type roots, in which the leaf concentration of Na, Mg, K, Ca, Fe, Rb, and Mo was indistinguishable from the wild type (Figure 9A). Furthermore, when individual plants were grouped using unsupervised hierarchical clustering based on their total leaf ionome, all plants with tsc10a-1 roots grouped together (Figure 9B), regardless if they had a wild-type or tsc10a-1 shoot. Such evidence clearly establishes that the leaf ionomic phenotype of tsc10a-1 is driven by loss of 3-KDS reductase activity specifically in roots.

Roots of tsc10a Contain Increased Suberin in the Endodermis

We recently observed that elevated suberin in roots of the enhanced suberin1 (esb1) Arabidopsis mutant is associated with significant alterations of the leaf ionome, including reductions in Ca and increases in Na and K (Baxter et al., 2009). To assess if a similar mechanism may be involved in the leaf ionomic phenotype of tsc10a, we quantified the aliphatic suberin monomers in roots of tsc10a-1, tsc10a-2, and the wild type (Figure 10), and the significance of any changes was determined using a single-factor mixed effect model ANOVA with a Benjamini-Hochberg multiple testing correction. We further imposed the requirement that a change in concentration of a suberin monomer be significant in multiple independent alleles. This analysis revealed significant (P < 0.01) increases in various suberin aliphatic monomers, including acids (20:0, 22:0, and 24:0), ω-OH acids (18:0, 18:1, 18:2, 20:0, and 22:0), dioic acids (18:0, 18:1, and 20:0), and alcohols (18:0, 20:0, and 22:0). These changes in individual aliphatic monomers represent an increase in the amount of total aliphatic monomers of 27% in both the

![Figure 9.](image)

Figure 9. In Arabidopsis, the Root Determines the Ionomic Phenotype of the tsc10a Mutants.

(A) Comparison of the leaf ionome of grafted and nongrafted plants. Data treated as in Figure 3. Data represent means ± SE from n = 18 plants per graft type.

(B) Hierarchical clustering of grafting plants of Col-0 and tsc10a-1. Clustering was performed on the log2 ratio of each line versus the mean of nongrafted wild type. NG, nongrafted plants; SG, self-grafted plants; ov, over (e.g., Col-0 ov tsc10a-1 represents plants with wild-type shoot grafted to a mutant root).
tsc10a-1 and tsc10a-2 mutants. To further understand the effect that loss of 3-KDS reductase activity has on the amount and localization of suberin in tsc10a-1, we performed transmission electron microscopy (TEM) on roots of tsc10a-1 and the wild type (Figure 11). Generally, in Arabidopsis roots, suberin is visible in the endodermis as alternating electron-opaque and electron-translucent layers inside the primary cell wall (Nawrath, 2002). In the TEM images presented here of Arabidopsis wild-type roots, suberin is clearly visible as alternating electron-opaque and electron-translucent layers on the inside of both the inner tangential cell wall and radial cell walls of the endodermis (Figure 11). However, wild-type plants lack suberin on the outer tangential cell wall of the endodermis (Figure 11). This contrasts with the endodermis of tsc10a-1, which clearly contains suberin on all sides of the cell wall (Figure 11).

Roots of tsc10a Respond Transcriptionally to Fe Deficiency

Leaves of tsc10a show reduced Fe accumulation of ~20% compared with the wild type (Table 1), and this reduced accumulation of Fe is reflected in a reduction in growth and increased chlorosis of tsc10a (tsc10a-1 and tsc10-2) when grown in alkaline soils in which Fe has reduced bioavailability (Figures 12A and 12B). Furthermore, these growth defects in tsc10a are suppressed by the addition of extra Fe to the soil, confirming the Fe specificity of these phenotypes. To further understand the mechanism driving the reduced leaf Fe and impaired growth in alkaline soils observed in tsc10a, we measured the expression of IRT1, the Fe transporter known to be primarily responsible for Fe uptake in roots of Arabidopsis (Vert et al., 2002). Expression of IRT1, quantified using qRT-PCR, was observed to be elevated in roots of tsc10a compared with the wild type when grown under Fe-sufficient conditions (Figure 12C). Such evidence strongly supports the conclusion that roots of tsc10a are responding to Fe deficiency compared with wild-type roots. Interestingly, although IRT1 expression is elevated in roots of tsc10a, plasma membrane IRT1 protein accumulation remains at wild-type levels (Figure 12D).

DISCUSSION

The results from this study conclusively establish that TSC10A (At3g06060) and TSC10B (At5g19200) from Arabidopsis encode 3-KDS reductases involved in the second step in sphingolipid biosynthesis. In addition, the observation that mutant plant lines lacking either TSC10A or TSC10B have no major growth defects under standard growth conditions, while plants lacking both genes are not recoverable, indicates that they are functionally redundant, and loss of both genes is lethal. The lethality of the tsc10a tsc10b double mutant confirms the essentiality of 3-KDS for sphingolipid biosynthesis. In previous studies, we have shown that plants with reduced sphingolipid biosynthesis are small due to impaired cell expansion (Chen et al., 2006; Dietrich et al., 2008). Therefore, it was surprising that plants lacking TSC10A, which is expressed at significantly higher levels than TSC10B, are visibly similar to the wild type. Since the specific activity of yeast-expressed TSC10B was considerably higher than that of yeast-expressed TSC10A, it was important to compare the 3-KDS reductase activity in the tsc10a mutant
Iron Homoeostasis Is Disrupted in Arabidopsis tsc10a Mutants. (A) and (B) Wild-type Col-0, tsc10a-1, and tsc10a-2 plants grown on acidic soil, pH 5.6, alkaline soil, pH 7.9, or alkaline soil amended with Fe and plant fresh weight (B). Values represent a mean (n = 3) ± SD. (C) Quantification of the steady state levels of IRT1 mRNA by qRT-PCR in roots of tsc10a. Ubc was used as the control gene, and four PCR reactions were done per replicate using three independent biological samples per genotype with error bars representing SD. (D) Analysis by immunoblotting of IRT1 protein in the plasma membrane of roots of wild-type, tsc10a-1, and tsc10a-2 plants. Each lane was loaded with equal quantities of PM measured as 1.5 μg of total protein.

Figure 12. Iron Homoeostasis Is Disrupted in Arabidopsis tsc10a Mutants.

The tsc10b mutants (Figures 2 and 7), suggesting that loss of TSC10B is compensated for by elevated TSC10A expression. This compensatory increase in TSC10A expression and 3-KDS reductase activity may be the explanation for the reversed leaf ionomic phenotype for K, Ca, Rb, and Mo observed in tsc10b mutant, compared with tsc10a (Tables 1 and 2).

In contrast with other characterized 3-KDS reductases, which stereoselectively reduce 3-KDS to form D-erythro-DHS, TSC10A was found to produce both D-erythro- and L-threo-DHS (Figure 5). It is interesting to note that both of the Arabidopsis enzymes are able to use either NADPH or NADH as cofactor, but it is only with NADPH that TSC10A produces both the L-threo and D-erythro products. Based on the structures of many SDRs, it is known that the N-terminal part of the protein contains the Rossmann fold that binds the NAD(P)H cofactor, whereas the C-terminal region forms the substrate binding domain. In addition, features of the Gly motif within the Rossmann fold predict which cofactor a given SDR is likely to use (Kallberg and Persson, 2006). The Arabidopsis enzymes are most closely aligned with those SDRs that use NADPH, but a conserved Arg is missing. In future studies, it will be interesting to construct chimeric proteins in which the relevant domains of TSC10A and TSC10B are swapped to gain insight into what controls the stereoselectivity of the enzymes. It is worth pointing out that the nonphysiological L-threo-DHS, also called safinogol, has been shown to have anticancer activity (Morales et al., 2007). It would therefore be of potential value to create a 3-KDS reductase with reversed stereoselectivity.

Despite the ability of the Arabidopsis 3-KDS reductases to substitute for Tsc10p in yeast, the enzymes have different topologies. Several hydropathy algorithms were used to determine the location of potential TMDs in the proteins (see Supplemental Table 1 online). All of the programs predict that residues 285 to 305 of Tsc10p comprise a TMD, and based on the results presented that place both ends of the protein in the cytoplasm, we conclude that there must be an even number and, thus, probably one additional TMD. The presence of additional TMDs located between amino acids 160 to 180 and 255 to 275 is predicted by several programs, but the hydrophobic domain from 160 to 180 includes two of the conserved catalytic residues (Ser-167 and Tyr-180) and is therefore unlikely to lie within the membrane. We therefore favor a topology model for Tsc10p with a TMD between 255 to 275, a short luminal loop, and a second TMD at 285 to 305 as we have previously proposed (Gupta et al., 2009). We also showed previously that the C-terminal 38 amino acids of Tsc10p are not required for enzymatic activity (Beeler et al., 1998). The Arabidopsis 3-ketosphinganine reductases have two predicted TMDs near their C termini that are positioned analogously to those in Tsc10p, but they also have a highly hydrophobic N-terminal extension for which there is no counterpart in Tsc10p. Furthermore, in contrast with Tsc10p, the glycosylation data for TSC10A clearly indicate that there is an odd number of TMDs with the N terminus in the lumen and the C terminus in the cytoplasm. Our data also show that the N terminus of TSC10B is in the lumen, and although we did not experimentally confirm that the C terminus is cytoplasmic, given the high similarity between the two Arabidopsis enzymes, we presume that they both have an N-terminal TMD, a large...
cytoplasmic catalytic domain followed by two additional closely spaced TMDs and a short cytoplasmic tail, a similar structure to that we previously proposed for the human 3-KDS reductase (FVT1) (Gupta et al., 2009). It is possible that the heterologously expressed *Arabidopsis* proteins adopt a non-native topology in yeast. However, these studies likely provide an accurate picture of the in planta topology because the plant enzymes are more similar to the human 3-KDS reductase (FVT1) than to Tsc10p, and topology studies of FVT1 in mammalian cells agree with the results presented for the *Arabidopsis* enzymes (Gupta et al., 2009). Furthermore, the heterologously expressed *Arabidopsis* 3-KDS reductases both have higher specific activities than yeast Tsc10p, also arguing that they adopt their native membrane topologies.

Although *Arabidopsis* plants lacking the TSC10A gene that encodes the majority of 3-KDS reductase activity only show subtle growth defects (see Supplemental Figures 1 to 3 online), the leaf ionome of tsc10a mutant plants is significantly perturbed, with increases in the concentrations of Na, K, and Rb and decreases in Mg, Ca, Fe, and Mo (Table 1). The leaf ionomic phenotype of tsc10a-1 was initially used to identify the TSC10A gene by map-based cloning of the 7113 ionomic mutant (here referred to as tsc10a-1), identified in a previous screen of fast neutron mutagenized *Arabidopsis* (Lahner et al., 2003). Analysis of three independent loss-of-function alleles of TSC10A (tsc10a-1, tsc10a-2, and tsc10a-3) and complementation with the wild-type TSC10A allele confirmed that loss of function of TSC10A causes the observed leaf ionomic phenotype (see Supplemental Figures 4 and 5 online; Figure 1). Reciprocal grafting of roots and shoots from tsc10a-1 and wild-type plants established that, even though TSC10A is expressed throughout the plant, the leaf ionomic phenotype of the TSC10A loss-of-function mutants is driven by loss of 3-KDS reductase activity solely in the roots (Figures 3 and 9). Grafted plants lacking 3-KDS reductase activity in shoots (tsc10a-1 shoot/wild-type root) had wild-type leaf ionomes, whereas grafted plants lacking 3-KDS reductase activity in roots (wild-type shoot/tsc10a-1 root) had a leaf ionome indistinguishable from the tsc10a-1 mutant.

Ion transport from the soil, through the root, and into the shoot involves both movement through the apoplastic space between cells and movement through cells that requires transport across the plasma membrane (PM). The asymmetric deposition of suberin in the endodermis blocks the apoplastic pathway, limiting access to the xylem and phloem to only those ions moving symplastically. Furthermore, the asymmetric arrangement of influx and efflux ion transporters on the PM in cells of the epidermis, endodermis, and stele drives the unidirectional transport of ions through the symplastic pathway. Depending on which ion is being transported the apoplastic or symplastic transport pathways in the root can predominate. Recently, we established that a substantial proportion of Ca transported to the shoot in *Arabidopsis* moves through the root apoplast, since a doubling of suberin in the root apoplast was observed to cause an ~50% reduction in leaf Ca accumulation (Baxter et al., 2009). By contrast, only a minor change in leaf Fe was observed (~9%) (Baxter et al., 2009), suggesting that apoplastic transport of Fe is limited. This lack of an apoplastic transport pathway for Fe is confirmed by the fact that the PM localized Fe transporter IRT1 is the only pathway for Fe uptake from soil in *Arabidopsis*; loss of IRT1 in *Arabidopsis* is lethal (Vert et al., 2002).

Similar to the elevated suberin in esb1, we also observed elevated suberin in roots of the tsc10a mutant (Figure 10). Furthermore, the suberin in tsc10a was observed to be distributed uniformly around cells of the endodermis, unlike wild-type roots where suberin is generally found only on the inner tangential cell wall and radial cell wall of endodermal cells (Figure 11). We conclude that it is the elevated suberin, along with its enhanced distribution, in the wall of endodermal cells that is responsible for blocking apoplastic transport of Ca$^{2+}$ in tsc10a roots, giving rise to the ~20% reduction of leaf Ca observed in the mutant. The 20% reduction in leaf Ca observed in tsc10a is less than the 50% reduction observed in esb1 (Baxter et al., 2009), and this likely reflects the fact that suberin in tsc10a is increased by 27% compared with the 100% increase observed in esb1 (Baxter et al., 2009). The elevated suberin in tsc10a may also be responsible for the enhanced Na, K, and Rb observed in the mutant, since similar changes were also observed in the esb1 mutant (Baxter et al., 2009). One possible mechanism to explain the elevated leaf Na and K may be that increased resistance to Na$^+$ and K$^+$ transport via the apoplastic pathway increases the movement of these ions via a more efficient symplastic transport pathway mediated by high affinity transporters, such as the Na transporter HKT1 (Uozumi et al., 2000) and the K transporters HAK5 and AKT1 (Rubio et al., 2008). We are currently unsure if reduced Mg in tsc10a is related to the changes in suberin observed in this mutant, since leaf Mg is unchanged in esb1 (Baxter et al., 2009). However, there is substantial evidence showing that in plants, leaf Mg and Ca are broadly correlated across taxa (Broadley et al., 2004; Watanabe et al., 2007) and also specifically in *Arabidopsis* (Broadley et al., 2010; Buescher et al., 2010). The mechanism underlying this coregulation of Mg and Ca in plants is yet to be established. A better understanding of the contrasting leaf Mg and Ca accumulation between esb1 and tsc10a could provide a powerful tool to help resolve this important unanswered question. Interestingly, similar to esb1 (Baxter et al., 2009) the TSC10A loss-of-function mutants also show increased resistance to wilting (see Supplemental Figure 7 online).

Recent discoveries, such as the determination that acyl-CoA:glycerol-3-phosphate acyltransferase, cytochrome P450 fatty acid ω-hydroxylase CYP86A1, β-ketocacyl-CoA synthase, fatty acyl-CoA reductases (FAR1, FAR4, and FAR5), a distinct glycerol-3-phosphate acyltransferase, and the DSO/ABC11 transporter are involved in suberin deposition are starting to unravel the enzymology of suberin biosynthesis (Beisson et al., 2007; Li et al., 2007; Höfer et al., 2008; Franke et al., 2009; Domergue et al., 2010; Panikashvili et al., 2010; Yang et al., 2010). The recent observation that loss of function of the dirigent-like protein ESB1 in *Arabidopsis* causes a doubling of suberin (Baxter et al., 2009) may provide the first evidence that dirigent-like proteins (Davin and Lewis, 2000) are involved in the biosynthesis of suberin, though currently the mechanism remains elusive. Though progress is being made understanding the biosynthesis of suberin, very little is known about the processes involved in transport of suberin monomers to the cell wall or the control of polymerization that leads to the highly regular lamellar structure visible...
in TEM (Figure 11). Sphingolipids have been established to be enriched in microdomains, or lipid rafts, within the PM, and these lipid rafts have been shown to be enriched in specific proteins (Borner et al., 2005), including proteins thought to be involved in cell wall assembly, including SKUS and SKS-1 (Sedbrook et al., 2002) and GPDL1 (Hayashi et al., 2008). It is possible that perturbations in PM lipid rafts in tsc10a, caused by the disruption of sphingolipid biosynthesis in this mutant, may alter the activity of such cell wall assembly proteins, and this may be responsible for the enhanced suberin biosynthesis observed in this mutant. However, further investigations are required to determine this.

Given that Fe is known to be primarily transported in the root symplast (Vert et al., 2002; Baxter et al., 2009), elevated suberin in tsc10a cannot explain the reduced leaf Fe and increased susceptibility to Fe deficiency in alkaline soils observed in tsc10a-1 and tsc10a-2 (Figures 12A and 12B). However, our grafting results establish that whatever mechanism is driving reduced leaf Fe in the TSC10A loss-of-function mutants is based in the root (Figure 9). Expression of the Fe transporter IRT1 is a good marker of Fe deficiency, since this gene is known to be strongly upregulated under Fe deficiency in roots of Arabidopsis (Connolly et al., 2002). IRT1 expression in roots of TSC10A loss-of-function mutants is highly elevated compared with the Col-0 wild type (Figure 12C) when both plants are grown in soil containing sufficient Fe, establishing that TSC10A loss-of-function mutants are responding to Fe deficiency. The Fe concentration of leaves of the TSC10A loss-of-function mutants is reduced by ~20% compared with Col-0 wild type, and this reduction in leaf Fe is similar to the 26% reduction observed for the frd3-5 Arabidopsis mutant (Lahner et al., 2003). frd3 is unable to load Fe-citrate into the xylem for translocation to the shoots (Durrett et al., 2007), leading to enhanced transcription of IRT1, increased accumulation of the IRT1 protein, and enhanced ferric chelate reductase activity in roots (reviewed in Morrissey and Guerinot, 2009). Based on the response of frd3 to reduced leaf Fe, we conclude that roots of the TSC10A loss-of-function mutants are also responding to reduced leaf Fe by increasing expression of IRT1. Our conclusion that loss of 3-KDS reductase activity in the TSC10A loss-of-function mutants is causing Fe deficiency is also supported by the observation that Mo accumulation in leaves of the TSC10A loss-of-function mutants is reduced by 67% compared with the wild type, as this is consistent with the reduction in leaf Mo we observed in wild-type plants responding to Fe deficiency (Baxter et al., 2008b). Furthermore, we have previously shown that frd3, a mutant that displays constitutive Fe deficiency responses, also shows a similar reduction in leaf Mo concentration compared with the wild type (Lahner et al., 2003).

However, the mechanism whereby loss of 3-KDS reductase activity in the TSC10A loss-of-function mutants causes reduced leaf Fe accumulation is unclear. One possibility is that alteration in the composition of lipid rafts in roots of the TSC10A loss-of-function mutants is causing reduced IRT1 transport activity. Several types of ion transporters, including ABC transporters, aquaporins, a Ca-ATPase, and a cyclic nucleotide gated channel, have been identified in lipid rafts (Borner et al., 2005; Morel et al., 2006); however, we currently have no evidence that IRT1 is located within a lipid raft domain. Another possibility is that altered lipid raft structures in the TSC10A loss-of-function mutants may disrupt the asymmetric cellular localization of the various Fe transporters, including IRT1, FPN1, FPN2, and FRD3 (reviewed in Morrissey and Guerinot, 2009), required for the correct unidirectional transport of Fe from the root surface to the stele for translocation to the shoot.

Significantly, unlike in frd3, which accumulates high levels of IRT1 protein (Rogers and Guerinot, 2002), leading to increased shoot accumulation of Mn, Co, Zn, and Cd (Delhaize, 1996; Rogers and Guerinot, 2002; Lahner et al., 2003), we observe no such enhanced accumulation of IRT1 protein in roots (Figure 12D) or increased shoot accumulation of Mn, Co, Zn, and Cd in the TSC10A loss-of-function mutants. This is puzzling since roots of the TSC10A loss-of-function mutants show a clear increase in the steady state levels of IRT1 mRNA. IRT1 is known to be subject to posttranslational regulation, with protein from the IRT1 transcript only accumulating in roots of plants responding to Fe deficiency, even when expression is driven from the 3SS promoter (Connolly et al., 2002; Kerkeb et al., 2008). Therefore, we propose that loss of 3-KDS reductase activity in the TSC10A loss-of-function mutants is disrupting the ability of the Fe deficiency signal, likely generated in the leaves, to suppress the Fe-induced turnover of IRT1 in roots. The signaling mechanism involved in the Fe-induced turnover of IRT1 is currently unknown. However, our results suggest that sphingolipids are involved in this signaling mechanism, either directly via a sphingolipid-related signaling molecule or indirectly by the disruption of critical protein interactions facilitated by lipid raft formation.

In summary, we show that Arabidopsis contains two bona fide 3-KDS reductases (TSC10A and TSC10B) that have redundant functions in sphingolipid biosynthesis. Both 3-KDS reductases are expressed throughout the plant, but TSC10A contributes ~98% of the 3-KDS reductase activity in planta. Loss of both TSC10A and TSC10B is lethal. Both TSC10A and TSC10B are located in the ER and have both altered substrate stereo-specificity and membrane topology compared with the yeast enzyme. However, both plant 3-KDS reductase can function in yeast. Furthermore, the loss of 3-KDS reductase activity in the TSC10A loss-of-function mutants leads to increases in the leaf concentration of Na, K, and Rb and decreases in Mg, Ca, Fe, and Mn. Changes in Ca, Na, and K are most likely due to the increased root suberin observed in the TSC10A loss-of-function mutants. However, the reduction in leaf Fe is more likely due to alterations in Fe transport caused by perturbations in PM sphingolipid-rich lipid raft structures. Although, significantly, the TSC10A loss-of-function mutants also appears impaired in the ability to inhibit Fe-induced turnover of IRT1, leading to a plant that is responding transcriptionally to Fe deficiency but that is unable to accumulate elevated levels of IRT1 protein.

METHODS

Plant Material and Growth Conditions

For axenic growth, Arabidopsis thaliana seeds were surface sterilized and sowed on Murashige and Skoog agar plates (Sigma-Aldrich) containing 1% sucrose. After 3 d of stratification at 4°C, the plates were maintained...
at 16 h light/8 h dark at 120 μmol m⁻² s⁻¹ at 23°C. Soil-grown plants, except those for inductively coupled plasma (ICP) analysis, were maintained at 22°C and 50% humidity under either long-day conditions with a 16-h-light (100 μmol m⁻² s⁻¹)/8-h-dark cycle or short-day conditions with an 8-h-light (200 μmol m⁻² s⁻¹)/16-h-dark cycle.

Arabidopsis plants for ICP–mass spectrometry analysis were grown in a controlled environment that has been described before (Lahner et al., 2003). Briefly, seeds were germinated on a 20-row tray with moist soil (Pro-Mix; Premier Horticure) after stratification at 4°C for 5 d. The plants were then grown with 10 h light (90 μmol m⁻² s⁻¹)/14 h dark and 19 to 22°C temperature. During the following days, plants were bottom-watered twice a week with modified 0.25× Hoagland solution (Baxter et al., 2009). Several leaves were harvested from 5-week-old plants for elemental analysis.

Plant transformation was achieved using the floral dipping method (Clough and Bent, 1998). Transgenic lines were selected on either half-strength Murashige and Skoog media or soil with hygromycin or BASTA according to the selection marker used in the transformation. For the hypocotyl elongation experiment, seeds were grown on square Petri plates (100 × 15 mm). After stratification, plates were placed in the light for 6 to 8 h to promote germination. Plates were then wrapped in foil and stored vertically at 22°C for 5 d prior to measurement of hypocotyls lengths.

Yeast Growth

Standard yeast media were prepared and yeast was cultured according to established procedures (Sherman et al., 1986). The tsc10A and tsc10-1 mutant yeast strains, Mata tsc10A::TRP1 ura3-52 trp1A ade2 his4 leu2A and Mata tsc10-1 leu2Δ trp1 ura3-52, were described previously (Beerel et al., 1998). The tsc10A mutant cells were cultured in medium containing 15 μM PHS and 0.2% D-glucose. The plasmids expressing the Arabidopsis Tsc10p orthologs were tested for their ability to complement the yeast tsc10 mutants by streaking transformants onto YPD with and without PHS.

Tissue Elemental Analysis

Tissue samples were dried at 92°C for 20 h in Pyrex tubes (16 × 100 mm) to yield ~2 to 4 mg of tissue for elemental analysis. After cooling, seven of 108 samples from each sample set were weighed. All samples were digested with 0.7 mL of concentrated nitric acid (Omnitrace; VWR Scientific Products) and diluted to 6.0 mL with 18 MΩ water. Elemental analysis was performed with an ICP–mass spectrometer (Eitan DRCE; Perkin-Elmer) for Li, Na, Mg, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, V, and Cd. All samples were normalized to calculated weights, as determined with a heurisitic algorithm using the best-measured elements, the weights of the seven weighed samples, and the solution concentrations described by Lahner et al. (2003) and implemented in the PIIMS database (Baxter et al., 2007). An Excel implementation of this algorithm is available at www.ionomicshub.org along with validation data sets. The normalized data were deposited in the PIIMS database (Baxter et al., 2007), which can be downloaded from www.ionomicshub.org.

Map-Based Cloning of tsc10A-1

DNA microarray-based bulk segregant analysis was performed as previously described (Borevitz et al., 2003; Hazen et al., 2005). Briefly, SFPs were identified between Col-0 and Ler-0 by hybridizing labeled genomic DNA from each of the accessions to Affymetrix AT TILLE 1.0R microarrays. Two genomic DNA pools from an F2 population of a cross between Ler-0 and the tsc10A-1 mutant in the Col-0 background were created and hybridized to separate DNA microarrays. Each one of the pools contained plants with either shoot Ca and Mg contents similar to Col-0 (control pool) or low shoot Ca and Mg contents similar to tsc10A-1 (low Ca and Mg pool). At loci unlinked to the low Ca and Mg phenotype, the pools should have equivalent amounts of each genotype, and the hybridization signal at each SFP should be intermediate between the two parent accessions, for an average difference between the two DNA microarrays of zero. At linked loci, the difference between the two DNA pools should be approximately two-thirds the difference between the parent accessions. By smoothing the signal across multiple SFPs, noise is reduced and the peak of the differences in hybridization signal will correspond to the chromosomal region of the loci controlling the low Ca and Mg trait. Raw hybridization data (.CEL files) for each probe on the AT TILLE 1.0R DNA microarrays used in these experiments have been submitted to the Gene Expression Omnibus and are accessible through GEO Series accession numbers (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15655). PCR-based genotyping was used for further mapping of the causing mutation in tsc10A-1. Using four SSLP markers and a population of 241 F2 plants from the Ler-0 × tsc10A-1 cross, we were able to map the gene to within a 400-kb genomic region. Further SSLP and cleaved-amplified polymorphic sequence markers were developed within this 400-kb mapping interval and used to screen 1279 further Ler-0 × tsc10A-1 F2 plants to identify informative recombinants to further narrow the mapping interval to a 30-kb region between cleaved-amplified polymorphic sequence markers of T1818K and T1848K. Overlapping fragments of ~0.7 to ~1 kb each, covering this 30-kb candidate region, were amplified from genome of tsc10A-1 and sequenced. The sequence of these fragments was alignment with the wild-type sequence using DNAStar. All primers for molecular markers and sequences are listed in Supplemental Table 2 online.

Arabidopsis Grafting

Seedlings were grafted and grafted seedlings grown in soil as previously described (Rus et al., 2006). Plants were harvested for leaf elemental analysis 4 weeks after transfer to soil.

Plasmid and Transgene Preparation

For construction of yeast expression vectors, TSC10A and TSC10B were PCR amplified from an Arabidopsis cdNA library (Paul et al., 2006) using primers At3g06060 sense and At3g06060 antisense, and At5g19200 sense and At5g19200 antisense (see Supplemental Table 2 online). The amplified fragments were restricted with either Xhol or SalI and ligated into the SalI site of plasmid pADH-3X-HA (Kohlwein et al., 2001), resulting in an in-frame fusion of the N-terminal triple-HA tag to the TSC10 candidate genes cloned behind the constitutive ADH1 promoter for yeast expression. For topology studies, the 53-amino acid GC from Suc2p was inserted after the start codon (GC82) or before the stop codon in the TSC10A or TSC10B expression plasmid using the same strategy used for the topology studies of Lcb1p (Han et al., 2004).

For complementing the tsc10A mutants, an ~5-kb wild-type genomic DNA fragment including the promoter and open reading frame of TSC10A was PCR amplified using primers of At1SC10ACS and At1SC10ACA (see Supplemental Table 2 online), and the PCR fragment was restricted with Ascl and cloned into the binary vector pEC291 (Curts and Grossniklaus, 2003) to produce EC291-TSC10Ag. The final plasmid was transformed into Agrobacterium tumefaciens strain of GV3101 and was introduced into the binary vector pEC291 (Curts and Grossniklaus, 2003) to produce EC291-TSC10Ag.

For construction of the vectors for transient expression of the GFP-TSC10A or GFP-TSC10B fusion proteins, a DNA fragment containing the complete coding region of TSC10A or TSC10B was amplified from TSC10A cdNA using TSC10A_GFP_F and ATSC10A_GFP_R primer pairs or TSC10BGFTR primer pairs (see Supplemental Table 2 online). PCR products were cloned into the binary vector pEC291 and transformed into A. tumefaciens GV3101.

For constitutive expression of the TSC10A fusion protein, a DNA fragment containing the complete coding region of TSC10A or TSC10B was amplified from TSC10A cdNA using TSC10A_Production primers (see Supplemental Table 2 online) and cloned into the binary vector pEC291 and transformed into A. tumefaciens.
Table 2 online). The amplified PCR product for TSC10A was ligated into the binary vector p1301A7 using the XbaI and BamHI restriction sites in frame with the GFP coding sequence. The p1301A7 plasmid was modified from pCAMBIA1301 by the insertion of a DNA fragment containing the GFP coding sequence, with the stop codon removed, two multicloning sites added at the 5’ and 3’ ends, and a NOS terminated added at the 3’ end. The PCR product for TSC10B was cloned into pMDC43 (Curtis and Grossniklaus, 2003) in frame with the GFP coding sequence using the Gateway recombinational cloning strategy.

Subcellular Localization of TSC10A and TSC10B

The subcellular localization of TSC10A and TSC10B was achieved by the transient expression of GFP-tagged proteins in tobacco (Nicotiana tabacum BY-2) protoplasts. Tobacco BY-2 culture cells were digested in protoplast isolation solution (1.2% Cellulase R10 and 0.6% Macerozyme, pH 5.7) for 4 h at room temperature. Digested cells in the isolation solution were layered on top of a solution containing 0.01% myo-inositol, 0.29% l-proline, 0.01% enzymatic casein hydrolysate, 10% sucrose, 0.098% MES, 0.43% Murashige and Skoog salts, 0.001% vitamin B1, and 0.037% KH2PO4, pH 5.7, and protoplasts collected from the top of the solution after low-speed centrifugation. The GFP-TSC10A or GFP-TSC10B and ER maker CD3-959-mCherry constructs were co-transformed into tobacco protoplasts using the polyethylene glycol method (Hwang and Sheen, 2001). Fluorescence from GFP and mCherry was observed using a confocal microscope (Zeiss LSM 710) 36 to 48 h after transfection.

Yeast Membrane Preparation

Microsomes were prepared from exponentially growing cells as previously described (Paul et al., 2006). Briefly, cells were pelleted at 5000g, washed with water, and repelleted. Cell pellets were resuspended in TEGM buffer containing 33% glycerol and stored at −80°C. The pellets were resuspended in TEGM buffer and repelleted at 50,000g for 10 min. The supernatant was transferred to a fresh tube. Three milliliters of CHCl3 were added, the sample was vortexed and centrifuged and the upper layer was removed. The lower layer was washed several times with 60 mM KCl until completely clear. The cleared layer was dried under N2 and resuspended in 1.0 μL CHCl3. Thirty microliters of the extracted lipids were applied to the preadsorbent area of a Silica 60 TLC plate (AnalTech) and developed in a two phase system containing 6.6% (w/w) Dextran T-500, 6.6% (w/w) potassium phosphate, pH 7.8. The phase system was thoroughly mixed by gentle inversion 100 times. The mixed phase was then separated by centrifugation at 1500g for 5 min. The upper phase, which contains most of the PM, was subsequently reextracted for three further times with fresh lower phase from a bulk phase system of identical composition prepared separately. The final upper phase was diluted 10 times in suspension buffer, and the PMs were collected by centrifuge at 100,000g for 1 h. Protein concentrations were estimated using the BCA protein assay kit (Pierce) and the PM analyzed by immunoblotting.

Immunoblotting

Microsomal proteins (15 μg) from strains expressing the HA-Tsc10p and the candidate HA-tagged TSC10 proteins were resolved on a 4 to 12% BIS-TRIS PAGE (Invitrogen). Following transfer of the separated proteins to nitrocellulose, the blots were blocked in 0.1 M Tris, 0.15 M NaCl, 0.1% Tween 20, and 5% dry milk. HA-tagged proteins were detected using horseradish peroxidase–conjugated monoclonal anti-HA antibodies (Roche Molecular Biochemicals) at 1:1000. The bound antibodies were detected by the enhanced chemiluminescence protein gel blotting detection system (Amersham Biosciences). For analysis of plasma membrane proteins, aqueous two-phase purified PM were mixed with 6× SDS loading buffer with 100 mM DTT and incubated at room temperature for 10 min. Samples were resolved by SDS-PAGE and electroblotted to a polyvinylidene fluoride membrane and membranes incubated with primary antibodies and horseradish peroxidase–conjugated secondary antibodies using standard protocols.

Long-Chain Base Analysis of Yeast

Yeast tsc10-1 mutant cells harboring the pADH-HA expression plasmids were grown in SD medium (0.67% yeast nitrogen base and 2% glucose) lacking Leu to an A600 of ~1.0. Fifty A600 units of cells were beaten with glass beads in 1.2 mL 0.5 M NH4OH for 4 min. Six milliliters of CHCl3-methanol (1:2) were added, and following centrifugation to remove cellular debris and beads, the cleared supernatant was transferred to a fresh tube. Three milliliters of CHCl3 were added, the sample was vortexed, and small volumes of CHCl3-methanol (1:2) were added until the solution cleared. Six milliliters of 0.5 M NH4OH was added, and the sample was vortexed and centrifuged and the upper layer was removed. The lower layer was washed several times with 60 mM KCl until completely clear. The cleared layer was dried under N2 and resuspended in 100 μL CHCl3. Thirty microliters of the extracted lipids were applied to the preadsorbent area of a Silica 60 TLC plate (AnalTech) and developed in CHCl3:methanol: 2 M NH4OH (40:10:1). After drying, the plate was sprayed with 0.2% ninhydrin in 95% ethanol and mildly heated until developed. Authentic standards (90 pmol 3-KDS, Matreya; 60 pmol PHS or DHS, Sigma-Aldrich) were added directly to the plate before development.

3-KDS Reductase Assay

3-KDS reductase was assayed as previously described (Beeler et al., 1998) using [163C]-3KDS and [93H]-3-KDS prepared with soluble 6-His-tagged Sphingomonas paucimobilis SPT expressed in Escherichia coli and purified by Ni-NTA chromatography, palmityl-CoA, and [163C]- or [93H]-Ser (Gupta et al., 2009). Extracted LCBS were dried, suspended in CHCl3:methanol (2:1, v/v), and resolved on a Silica Gel G TLC plate developed with CHCl3:methanol:2 M NH4OH (40:10:1). [93H]-3-KDS and [163C]-DHS (identified by ninhydrin-stained unlabeled standards resolved in an adjacent lane) were scraped, and radioactivity determined by liquid scintillation spectrometry. [163C]-3KDS and [163C]-DHS were quantified using a STORM 860 phosphor imager (Amersham). For determination of...
the specific activities of the enzymes, the amount of 3X-HA-tagged Tsc10p, TSC10A, and TSC10B was determined by comparison to puri-
fied 3X-HA tagged S. paucimobilis SPT using scanning densitometry of immuno-oblots.

Analysis of AccQ-Derivatized LCBs

LCBs and complex sphingolipids from the in vitro 3-KDS reductase assays or standards were dried under N₂ and dissolved in methanol:190 mM triethylamine (20:3). AccQ derivitization solution (AccQ-Fluor; Watters) was added at 2 mM and allowed to react at room temperature for 60 min. Methanolic KOH (0.1 M) was added and allowed to react at 37°C for 30 min, and the solution was then neutralized by the addition of methanolic acetic acid (final 0.1 M). A portion of this reaction mixture was injected onto a reverse phase C18 column (Jones Chromatography) using an HP1090 HPLC with an autosampler at 1.5 mL/min acetonitrile: methanol:water:acetic acid: triethylamine (48:32:13.5:3:0.7), solution A. After 60 min, the column was flushed and reset using acetonitrile: methanol (60:40) at 1.0 mL/min for 10 min and returned to solution A at 1.5 mL/min for 6 min. The AccQ-derivatized products were detected by an HP fluorescence detector set at 244 nm as the excitation wavelength and 398 nm as the emission wavelength.

Arabidopsis Microsomal Membrane Preparation and 3-KDS
Reductase Assays

Plant micromoles from wild-type Arabidopsis and tsc10a and tsc10b mutants were prepared as described previously (Chen et al., 2006). 4H-3-KDS was added (40,000 cpm, ~20 μM) to a 300-μL reaction mixture containing 0.05 M HEPES, pH 6.9, 2 mM NAD(P)H, 0.25% tertigol, and 2 mM β-mercaptopetoethanol. The reaction was initiated by the addition of 0.5 mg microsomal protein prepared from the wild type and tsc10a-2 and tsc10b-1 mutants. After 30 min at 37°C, the reaction was stopped by addition of 100 μL 2 N NH₄OH and 2 mL of CH₃Cl:methanol (1:2). The LCBs were extracted and resolved by thin layer chromatography as described above. Controls included reactions lacking microsomal protein, reactions lacking NAD(P)H cofactor, reactions with microsomal protein prepared from the tsc10a cells, and chemical reduction using 60 mM NaBH₄.

Sphingolipid Profiling of Wild-Type and Mutant Arabidopsis

The sphingolipid profiles of elongating hypocotyls from wild-type, tsc10a-2, and tsc10b-2 mutant plants was performed by reversed-phase high performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry detection as previously described (Markham et al., 2006; Markham and Jaworski, 2007). The 3-KDS was detected by monitoring the multiple reaction monitoring Q1 300.4 m/z Q3 270.3 m/z and eluted from the HPLC column just after d18:0, identical to authentic 3-KDS standards (Matrey). The 4-hydroxy-3-KDS was detected by the same multiple reaction monitoring as t18:1 but elutes as a peak just after t18:0. No standard is available for 4-hydroxy-3-KDS, but the keto chemistry of the peak was confirmed by reducing it to t18:0 through treatment with sodium borohydride.

Suberin Analysis of Wild-Type and Mutant Arabidopsis

Suberin was analyzed both chemically and by TEM. Root suberin monomer composition of 4-week-old plants was analyzed according to Bonaventure et al. (2004) with slight modifications described by Lü et al. (2009). Briefly, root tissue was ground, delipidated, and dried. Dried material was demethylized in 6 mL of 3 N methanolic hydrochloride (Supelco) and 0.45 mL (7%, v/v) methyl acetate (Sigma-Aldrich) at 60°C for 16 h. Methyl heptadecanoate was used as an internal standard. Reactions were allowed to cool to room temperature and the reaction terminated by the addition of 6 mL of saturated, aqueous NaCl followed by two extractions (10 mL) with distilled dichloromethane to remove methyl ester monomers. After washing the organic phase three times with 0.9% (w/v) aqueous NaCl, dichloromethane extracts were dried with 2,2-dimethoxypropane (Sigma-Aldrich) and dried under nitrogen gas. Monomers were derivatized in pyridine and BSTFA (1:1, v/v) for 15 min at 100°C. Excess pyridine:BSTFA was evaporated under nitrogen gas, and the sample dissolved in heptane:toluene (1:1, v/v) prior to analysis with a Hewlett-Packard 5890 series II gas chromatograph. The casparian band of roots of 6-week-old plants was viewed by TEM as reported by Lü et al. (2009).

qRT-PCR

Total RNA isolation was conducted as described earlier (Chen et al., 2006). The primers used for transcript quantification of TSC10A and TSC10B are shown in Supplemental Table 2 online. Four reactions were done per biological sample, and three independent replicate samples per genotype were used to evaluate the transcript abundance of TSC10A and TSC10B. Data were analyzed using the SDS software (Applied Biosystems version 1.0), following the method of Livak and Schmittgen (2001). Cycle time (CT) values were determined based on efficiency of amplification. The mean CT values were normalized against the corresponding UBQ10 gene (At4g05320) and CT values calculated as (CT TSC10 – CT UBQ10). The expression of TSC10A and TSC10B was calculated using the 2^-ΔΔCT method. The final error was estimated by evaluating the 2^-ΔΔCT term using 2^-ΔΔCT plus SD and 2^-ΔΔCT minus the SD (Livak and Schmittgen, 2001).

Statistical Methods

Single-factor mixed effect model ANOVAs were calculated comparing a wild-type gene response to mutant gene response for data shown in Tables 1 and 2 and Figure 12. A Levene’s homogeneity of variance test was first performed to check if data transformation was necessary at P ≤ 0.05 before the ANOVAs were calculated. If a data transformation was found to stabilize the variance, all further analyses were performed on the transformed data, even though results are presented in the untransformed form for ease of interpretation. The F-test P values were corrected for the multiple tests using a Benjamini-Hochberg multiple testing correction. If a significant corrected F-test P value was obtained at P ≤ 0.05 from an ANOVA, then differences of least squares means was used as a multiple comparison procedure to compare the wild-type gene response to that of the mutants. To account for the effect of the independent alleles for each gene, we imposed an additional filter that required that each independent line was significantly different from the wild type (P ≤ 0.05) in the mixed effect model analysis.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data libraries under the following accession numbers: TSC10A (At3g06060), NM_111481; TSC10B (At5g19200), NM_121925; UBQ10 (At4g05320), AY139999; and IRT1 (At4g19690), NM_118089.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. The Effect of Sucrose on Root Growth of tsc10a.

Supplemental Figure 2. Developmental Changes in tsc10a.
Supplemental Figure 3. Flowering and Hypocotyl Elongation Phenotypes in tsc10a.

Supplemental Figure 4. Segregation of the Leaf Ionic Phenotype in 5-Week-Old F2 Plants from a Ler-0 x tsc10a-1 Outcross.

Supplemental Figure 5. Map-Based Cloning of tsc10a-1.

Supplemental Figure 6. Relationship between Arabidopsis TSC10A and Its Various Homologs.

Supplemental Figure 7. Wilting Resistance of tsc10a.

Supplemental Table 1. Predicted Transmembrane Domains in the Yeast, Arabidopsis, and Human 3-KDS Reductases.

Supplemental Table 2. Primers Used for PCR Amplification.

ACKNOWLEDGMENTS

This work was supported by grants from the U.S. National Science Foundation Arabidopsis 2010 Program to D.E.S. (IOB 0419695) and a collaborative grant to T.M.D. (MCB-0313466) and E.B.C. and J.G.J. (NSF-084312), and the U.S. National Institutes of Health, National Institute of Neurological Disorders and Stroke to T.M.D. (NS47717). We thank Jonathan Napier, Frédéric Beaudoin, and Daniel Lynch for helpful discussions and Deb Palmquist for valuable assistance with the statistical analyses.

Received August 26, 2010; revised January 19, 2011; accepted February 14, 2011; published March 18, 2011.

REFERENCES

Sphingolipids Regulate the Leaf Ionome 1079

Nublat, A., Desplans, J., Casse, F., and Berthomieu, P. (2001). sas1,

Sphingolipids in the Root Play an Important Role in Regulating the Leaf Ionome in Arabidopsis thaliana
Dai-Yin Chao, Kenneth Gable, Ming Chen, Ivan Baxter, Charles R. Dietrich, Edgar B. Cahoon, Mary Lou Guerinot, Brett Lahner, Shiyou Lü, Jonathan E. Markham, Joe Morrissey, Gongshe Han, Sita D. Gupta, Jeffrey M. Harmon, Jan G. Jaworski, Teresa M. Dunn and David E. Salt
Plant Cell 2011;23;1061-1081; originally published online March 18, 2011; DOI 10.1105/tpc.110.079095

This information is current as of July 8, 2017

Supplemental Data /content/suppl/2011/03/17/tpc.110.079095.DC1.html
References This article cites 80 articles, 42 of which can be accessed free at: /content/23/3/1061.full.html#ref-list-1
eTOCs Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain
CiteTrack Alerts Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain
Subscription Information Subscription Information for The Plant Cell and Plant Physiology is available at: http://www.aspb.org/publications/subscriptions.cfm

© American Society of Plant Biologists
ADVANCING THE SCIENCE OF PLANT BIOLOGY