ON THE COVER

During plant growth and development, chloroplasts divide repeatedly in order to maintain their population. The site of division is specified by the medial placement of the Filamentous temperature sensitive Z (FtsZ) ring. Wilson et al. (pages 2939–2949) show that two mechanosensitive channel homologs, MSL2 and MSL3, are necessary for proper FtsZ ring placement and chloroplast division. The cover shows cauline leaf mesophyll cells of msl2 msl3 double mutant plants expressing FtsZ1-green fluorescent protein (GFP), which contain grossly enlarged chloroplasts with aberrant FtsZ ring placement. FtsZ1-GFP and chlorophyll fluorescence are represented by pseudo-color green and red, respectively.

IN BRIEF

The Evolution of Photorespiratory Glycolate Oxidase Activity
Nancy R. Hofmann

BIK1 Function in Plant Growth and Defense Signaling
Nancy A. Eckardt

MAP65-3 Cross-Links Interdigitated Microtubules in the Phragmoplast
Kathleen L. Farquharson

A Surprising Role for Vacuolar Pyrophosphatase
Gregory Bertoni

REVIEW

Transcription Dynamics in Plant Immunity
John W. Moore, Gary J. Loake, and Steven H. Spoel

RESEARCH ARTICLES

Conservation and Purifying Selection of Transcribed Genes Located in a Rice Centromere
Chuanzhu Fan, Jason G. Walling, Jianwei Zhang, Cory D. Hirsch, Jiming Jiang, and Rod A. Wing

Biochemical and Genetic Requirements for Function of the Immune Response Regulator BOTRYTIS-INDUCED KINASE1 in Plant Growth, Ethylene Signaling, and PAMP-Triggered Immunity in Arabidopsis
Kristin Laluk, Hongli Luo, Maofeng Chai, Rahul Dhawan, Zhibing Lai, and Tesfaye Mengiste

Functional Analysis of All AGAMOUS Subfamily Members in Rice Reveals Their Roles in Reproductive Organ Identity Determination and Meristem Determinacy
Ludovico Dreni, Alessandro Pilatone, Dapeng Yun, Stefano Erreni, Alice Pajoro, Elisabetta Caporali, Dabing Zhang, and Martin M. Kater
Combined Noninvasive Imaging and Modeling Approaches Reveal Metabolic Compartmentation in the Barley Endosperm

Hardy Rolletschek, Gerd Melkus, Eva Grafahrend-Belau, Johannes Fuchs, Nicolas Heinzel, Falk Schreiber, Peter M. Jakob, and Ljudmilla Borisjuk

Elucidation of the Pathway to Astaxanthin in the Flowers of *Adonis aestivalis*

Francis X. Cunningham and Elisabeth Gantt

Medicago truncatula CYP716A12 Is a Multifunctional Oxidase Involved in the Biosynthesis of Hemolytic Saponins

Maria Carelli, Elisa Biazzi, Francesco Panara, Aldo Tava, Laura Scaramelli, Andrea Forceddu, Neil Graham, Miriam Odoardi, Efisio Piano, Sergio Arcioni, Sean May, Carla Scotti, and Ornella Calderini

Some figures in this article are displayed in color online but in black and white in the print edition.

Online version contains Web-only data.

Open Access articles can be viewed online without a subscription.
This information is current as of March 28, 2021

eTOCs	Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain
CiteTrack Alerts	Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain
Subscription Information	Subscription Information for *The Plant Cell* and *Plant Physiology* is available at: http://www.aspb.org/publications/subscriptions.cfm