












NHX5 (pH 6.4; ANOVA, P value = 0.008). We noted that this
difference was not as steep as the one previously measured
between the TGN and PVC (Figure 7). This can be explained by
the fact that VHAa1 and NHX strongly colocalized in both
Arabidopsis (Bassil et al., 2011b) and tobacco epidermal cells
(see Supplemental Figure 9A online). Given this strong coloc-
alization, we assumed that if the amount of VHAa1 and NHX
varied within a given population of VSR compartments, it
would affect luminal pH. To address this hypothesis, we ana-
lyzed cells coexpressing NHX6-YFP with VHAa1-RFP and
found that, indeed, the relative fluorescence of the two markers

varied between organelles (see Supplemental Figure 9A online,
plots 1 and 2).
In order to assess the role of pH in vacuolar transport, we

used a set of drugs known to interfere with vacuolar trafficking.
As shown in Figure 9A, all treatments significantly modified the
pH in VSR organelles compared with controls (Tukey test, P
value < 0.001). Wortmannin, latrunculin B, and concanamycin A
led to the alkalinization of VSR compartments with the strongest
effects observed with concanamycin A, a drug known to spe-
cifically inhibit the V-ATPase and interfere with the transport of
soluble vacuolar proteins by acting at a step prior to reaching

Figure 5. The TGN Subpopulation of VSR Compartments Is More Acidic Than the VSR Structures Associated with the Late PVC in Tobacco Epidermal
Cells.

Coexpression of pH-VSR with RFP-SYP61 ([A] to [D]) or Rha1-mCherry ([E] to [H]).
(A) and (E) Confocal images showing the coexpression of pH-VSR (green) with either RFP-SYP61 ([A], magenta) or Rha1-mCherry ([E], magenta).
(B) and (F) Percentage of pH-VSR compartments that are colocalized with either RFP-SYP61 (B) or Rha1-mCherry compartments (F).
(C) and (G) Average pH of pH-VSR compartments as a function of their distance from the closest TGN body labeled with RFP-SYP61 (C) or the closest
late PVC body labeled with Rha1-mCherry (G). Three populations are identified: colocalized (<125 nm), associated (shaded area between 125 and
500 nm), or distinct (above 500 nm).
(D) and (H) Average pH found in the three populations of organelles that were colocalized with (white), associated with (gray), or distinct from (black)
RFP-SYP61 (D) or Rha1-mCherry (H).
n > 118, Tukey test, **P value<0.01 and ***P value < 0.001. Distance is expressed in logarithmic scale. n.a., not applicable. Error bars are SD. Bars = 5 µm.
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the vacuole (Matsuoka et al., 1997). We tested the notion that
antiporters alkalinize the lumen of VSR compartments using
amiloride, an inhibitor of Na+/H+ antiporters (Blumwald and
Poole, 1985). As shown in Figure 9A, amiloride leads to a sig-
nificant acidification of VSR organelles. To confirm that these
results were due to a direct effect of the drugs rather than an
effect on protein localization, we determined whether VHAa1
(Figure 9B) or NHX5 (Figure 9C) was still present in the VSR
compartments after treatment with the drugs and found that
concanamycin A had almost no effect on the VSR/VHAa1 dis-
tribution (Figure 9B) and slightly increased the population of VSR
with NHX5 (Figure 9C). Amiloride slightly increased the fraction
of VSR organelles with VHAa1 and had no effect on the VSR-

NHX5 distribution. These results suggested that the pH changes
observed upon treatment with concanamycin A or amiloride
were most likely due to the respective inhibition of V-ATPase or
NHX activity. This supports the idea that pH homeostasis in VSR
compartments is maintained by both V-ATPase and NHX, likely
regulating pH in an opposing manner, with V-ATPase acidifying
and NHXs alkalinizing endosomes. If this were the case, then the
concomitant use of both concanamycin and amiloride should
result in an intermediate pH, compared with when either was
used alone. Results indicated in Figure 9A are consistent with
this notion. Wortmannin and latrunculin B also increased the
luminal pH of VSR compartments, suggesting that the balance
between V-ATPases and NHX might be altered. Indeed,

Figure 6. The Acidic-to-Alkaline Gradient Is Related to Anterograde Trafficking of VSR from TGN to Late PVC in Tobacco Epidermal Cells.

Coexpression of pH-VSR-Y with RFP-SYP61 ([A] to [D]) and pH-VSR-IM with Rha1-mCherry ([E] to [H]).
(A) and (E) Confocal images showing the coexpression of pH-VSR sensors (green) and either RFP-SYP61 ([A], magenta) or Rha1-mCherry ([E],
magenta).
(B) and (F) Proportion of pHluorin-labeled structures that colocalized either with RFP-SYP61 (B) or Rha1-mCherry (F).
(C) and (G) Average pH in compartments labeled with either pH-VSR-Y (C) or pH-VSR-IM (G) as a function of their distance either from the closest TGN
labeled with RFP-SYP61 (C) or from the closest late PVC labeled with Rha1-mCherry (F). The pH of the three identified populations, colocalized (<125
nm), associated (shaded area between 125 and 500nm), or distinct (above 500 nm), are indicated in (D) and (H).
Distance is expressed in logarithmic scale. n.a., not applicable. Error bars are SD. n = 205 in (B) to (D); n = 138 in (F) to (H). Tukey test, ***P value < 0.001.
Bar = 5 µm.
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treatment with wortmannin did significantly induce a separation
of VHAa1 and VSR structures (Figure 9B; see Supplemental
Figure 10A online) and also tripled the number of NHX5-positive
VSR compartments (Figure 9C; see Supplemental Figure 10B
online). Latrunculin B slightly increased the fraction of VSR that
colocalized with VHAa1 and had no effect on the colocalization
of VSR with NHX5 (Figures 9B and 9C). The increase in VSR and
VHAa1 colocalization as well as the observed increase in pH of
VSR compartments following latrunculin B treatment suggests
that V-ATPase activity requires association with actin filaments.

DISCUSSION

pH of the Plant Endomembrane System

In this study, we developed pH sensors, targeted them to spe-
cific cellular compartments, and used live-cell imaging to mea-
sure the luminal pH along the plant secretory pathway. Similar to
reports in animal cells (Llopis et al., 1998; Miesenböck et al.,
1998), plant cells displayed a gradual acidification from the ER to
the lysosome/vacuole, as summarized in Figure 10. The pH was
;1.5 pH units more acidic in the vacuole compared with the ER
in tobacco cells, and the difference was nearly 2 pH units in
Arabidopsis cells.

Overall, the pH values obtained in plant intracellular com-
partments are similar but slightly more alkaline than their
animal cell equivalents (Paroutis et al., 2004). The pH reported in

lysosomes (pH 5.5) is also similar to the pH we obtained in va-
cuoles of tobacco epidermal cells (pH 6) and in Arabidopsis root
tip cells (pH 5.5) as well as to earlier published results (Krebs
et al., 2010; Bassil et al., 2011b). The TGN/EE was significantly
more acidic (0.5 pH units) than the trans-Golgi, as observed in
mammalian cells (Llopis et al., 1998). One intriguing result that
we found was that the pH of the TGN was more acidic than that
of the PVC and of the late PVC (discussed further below).
We obtained very similar pH values in the TGN subpopulation

of VSR compartments that colocalized with SYP61 or VHAa1
(pH 6.1 and 6.2, respectively). In plants, VHAa1 and SYP61
strongly overlap, with VHAa1 being more distant to the Golgi
compared with SYP61 (Kang et al., 2011). Curiously, while the
colocalization of VSR to both TGN markers clearly identified
a pH gradient with the distance from the TGN, the same ex-
periment using the trans-Golgi marker ST failed to identify any
pH variation within VSR organelles. These results may indicate
that the acidic population of VSR could represent mainly the
“free” subpopulation of TGN with a Golgi-independent dynamic
(Viotti et al., 2010). Collectively, our results highlight the dynamic
nature of compartments and emphasize the limitations of
using fixed tissue that merely captures a snapshot in time and
cannot inform on either the origin or destination of particular
organelles.
The identification of subpopulations of VSR organelles with

distinct luminal pH values suggests that pH and trafficking are
intimately connected. In plants, the TGN and early endosome
are both labeled by VHAa1 (Dettmer et al., 2006). In animal cells,
the early endosome is more alkaline than the TGN, and the pH of
TGN obtained in this study is closer to the animal TGN pH (pH
5.9) than that of animal early endosomes (pH 6.3). In our hands,
only a fraction of VHAa1 and SYP61 organelles colocalized with
VSR, and it is possible that the pHTGN measured with VSR rep-
resents only a subpopulation of all TGN/EE compartments, at
least in tobacco. Interestingly, the pH in the SYP61 fraction of
pH-VSR-Y compartments (pH = 6.5) was significantly more al-
kaline than that measured with pH-VSR (6.1, P value < 0.0001). It
was previously shown that VSR can cycle through the plasma
membrane and that mutating the YMPL motif would force VSR
into this alternative pathway (daSilva et al., 2006; Saint-Jean
et al., 2010). It is therefore tempting to conclude that the SYP61
fraction labeled with pH-VSR-Y also includes early and recycling
endosomes.
To analyze later compartments in the vacuolar route, we used

the well-characterized marker Rha1, a GTPase that localizes to
late endosome/MVB/late PVC and functions in trafficking to the
vacuole (Nielsen et al., 2008; Geldner et al., 2009; Foresti et al.,
2010). As shown previously, we found that VSR does not lo-
calize to the late PVC, supporting the notion that VSR recycles
from the PVC before it can reach the late PVE (daSilva et al.,
2005; Saint-Jean et al., 2010), giving rise to a late PVC that is
depleted of receptors (Foresti et al., 2010) and enriched in
vacuolar proteins and rab5 GTPases (Bottanelli et al., 2012).
Almost a fourth of the compartments labeled with pH-VSR were
closely associated with the late PVC and may represent VSR
organelles previously identified, using electron microscopy, to
be in close periphery of MVBs (Otegui et al., 2006; Viotti et al.,
2010; Scheuring et al., 2011) or of functionally similar

Figure 7. Average Luminal pH of Compartments between the Golgi and
Vacuole in Tobacco Epidermal Cells.

The average pH values were obtained from the subpopulations of pH-
VSR colocalized with SYP61-RFP (TGN), pH-VSR associated or distinct
from SYP61-RFP (PVC), or pH-VSR-IM colocalized with Rha1-mcherry
(late PVC [LPVC]). pH measurements from 120 TGN, 412 PVC, and 105
late PVC distinct organelles. Tukey test, **P value < 0.01. Error bars are
SD; n > 63.
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Figure 8. The Population of VSR Compartments Colocalizing with VHAa1 Is More Acidic Than the Population Colocalizing with NHX5 in Tobacco Epidermal Cells.

Coexpression of pH-VSR with VHAa1-RFP ([A], [B], and [E]) or NHX5-RFP ([C], [D], and [F]).
(A) and (C) Confocal images with pH-VSR (green) and VHAa1-RFP (A) or NHX5-RFP (C) in magenta.
(B) and (D) Percentage of pHluorin-labeled structures that colocalized with (white), associated with (gray), or were distinct from (black) either VHAa1-
RFP (B) or NHX5-RFP (D).
(E) and (F) Average pH in independent compartments labeled with pH-VSR as function of their distance either from the closest TGN labeled with
VHAa1-RFP (E) or the closest compartment labeled with NHX5-RFP (F). Three populations are identified: colocalized (<125 nm), associated (gray zone
between 125 and 500 nm), or distinct (above 500 nm).
(G) Average pH found in pH-VSR structures colocalized with VHAa1-RFP or NHX5-RFP.
n > 183. Tukey test, P value < 0.05. Distance is expressed in a logarithmic scale. Error bars are SD. Bars = 5 µm.
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compartments probably in the process of fusing to the central
vacuole (Paris et al., 1997). Interestingly, the late PVC–associated
compartments were significantly more alkaline than the rest of the
VSR organelles (P value < 0.0001). Since pH-VSR is not degraded,
it is tempting to postulate that these alkaline compartments are
VSR recycling structures.

To measure the luminal pH of the late PVC, we chose to fuse
pHluorin with aleurain (Aleu-pH) or a mutated form of pH-VSR
that fails to recycle from the PVC (Saint-Jean et al., 2010).
Surprisingly, although these two fusions both colocalized with
the late PVC marker Rha1, the pH values obtained were
different: 6.5 for the Aleu-pH and 7.1 for pH-VSR-IM. This
discrepancy might be due to the fact that Aleu-pH is soluble,
while pH-VSR-IM is membrane bound and, therefore, the
two sensors might have altered pKa’s due to these different
microenvironments.

Maintenance of Organelle pH Homeostasis

The observation that the TGN is more acidic than the late PVC
was unexpected primarily because the pH gradient opposes the
gradual acidification of compartments from the ER and the
vacuole that was measured. The activity of endosomal V-ATPase
is essential to maintain the acidity of the VSR organelles, as
indicated by the finding that application of concanamycin A led
to alkalinization of VSR organelles with no change in VHAa1/

VSR colocalization. Electron microscopy studies showed that
the identity and independence of the TGN is significantly af-
fected by concanamycin A. As a result, VHAa1, SYP61, and VSR
are redistributed toward the Golgi (Viotti et al., 2010; Scheuring
et al., 2011), suggesting a loss of differentiation beyond the
trans-Golgi. Wortmannin treatment also strongly modified the
pH in VSR compartments, but in this case, it was due to an
exclusion of VHAa1. The same treatments lead to an opposite
effect in VSR structures containing NHX5, suggesting that not
only the proper distribution of V-ATPase, but also that of NHX5/
6 in VSR compartments, are essential to maintain the luminal
pH difference between the TGN and the late PVC. The acidi-
fication of VSR compartments by amiloride adds strength to this
argument.
Our results support the notion that the activity of V-ATPase is

necessary for the acidification of VSR structures and conse-
quently for vacuolar transport. These results fit well with the
observation that VHAa1 is mainly concentrated in the TGN/EE
but cannot be detected in the late endosome (Dettmer et al.,
2006). Other H+ pumps, such as H+-pyrophosphatase, have not
yet been identified in endosomal compartments (Robinson et al.,
2012). In addition to luminal acidification, our results also sug-
gest that organelle alkalinization, likely to be mediated at least in
part by NHX-type endosomal antiporters, such as NHX5 and
NHX6 in Arabidopsis, is required for the regulation of luminal pH
homeostasis. These results are in accordance with the proton

Figure 9. Inhibitors of Vacuolar Transport Alter the pH of VSR Compartments.

Tobacco epidermal cells expressing pH-VSR were treated with 1 µM concanamycin A (ConcA) for 60 min, 10 µM wortmannin (Wort) for 60 min, 25 µM
latrunculin B (LatB) for 60 min, or 200 µM amiloride for 60 min, alone or in combination with concanamycin A. Tukey test compared with control;
***P value < 0.001. Error bars are SD.
(A) Average pH found in VSR particles after treatment compared with noninfiltrated controls.
(B) and (C) Distribution of pH-VSR compartments that colocalized with VHAa1-RFP (B) or NHX5-RFP (C) following drug treatments.
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leak model (Demaurex, 2002; Bassil et al., 2012) and with the
fact that the double knockout mutant nhx5 nhx6 is impaired in
soluble protein trafficking to the vacuole (Bassil et al., 2011b).
Direct measurement of endosomal pH in nhx5 nhx6 knockouts
or V-ATPase knockdowns would address this hypothesis more
directly, assuming that the ability to target pH sensors would not
be impaired by altered pH in knockouts.

Binding and pH

A clear link between pH in VSR bodies and transport to the
vacuole is possible because the application of drugs known
to affect vacuolar transport, such as concanamycin A, ami-
loride, and wortmannin, also significantly affect compart-
mental pH. Our results suggest that vacuolar trafficking
mediated by VSR occurs between an acidic TGN and a more
alkaline late PVC. The current model for VSR-mediated
transport of soluble proteins to the vacuole proposes that

binding occurs in the TGN and ligand release occurs in the
PVC due to a decrease in pH. This model is based on several
independent in vitro binding assays (Kirsch et al., 1994;
Ahmed et al., 2000; Shimada et al., 2003a) and resembles that
of the mannose-6-phosphate receptor in mammalian cells
(Kornfeld, 1992). In these assays, binding was performed on
affinity columns harboring various vacuolar sorting determi-
nants with a membrane fraction containing the receptor. The
binding step itself was performed at pH 7.0, and release was
obtained by eluting with a solution at pH 4. One in vitro
binding assay of VSR to its ligand has been performed to
quantify binding as a function of pH, using the competition
between iodinated and an unlabeled aleurain vacuolar tar-
geting sequence. This binding curve is bell-shaped with op-
timal binding occurring at pH 6.2 (Kirsch et al., 1994). Below,
but most importantly also beyond this optimum, binding de-
creased significantly, being 20% less efficient at pH 7.0 than
the optimum at pH 6.2. Interestingly, the in vivo luminal pH
value of 6.1 that we measured in the TGN of tobacco epi-
dermal cells is very close to the optimal in vitro binding pH.
We found further significant alkalinization of pH between PVC
and late PVC, suggesting that if pH-mediated release occurs
in plants, it might be at a step between the TGN and PVC and
caused by alkalinization rather than acidification. The KDEL
recycling receptor ERD2 also displays a bell-shaped in vitro
pH binding curve (Wilson et al., 1993), and the difference in
binding efficiency is 18% between the known pH 6.7 in cis-
Golgi where binding of ERD2 occurs, and receptor release at
pH 7.2 in the ER. Similarly, a 20% decrease in binding affinity
of VSR to its ligand due to alkalinization could theoretically
explain the release of the ligand in vivo. Nevertheless, in vitro
binding assays cannot accurately reflect what might occur in
vivo where many factors could affect VSR binding to its li-
gands, such as VSR homodimerization (Kim et al., 2010) or
the ionic environment of organelles. VSR contains three epi-
dermal growth factor repeats that play a role in modulating its
binding to the ligand (Herz et al., 1988; Rogers et al., 2004).
Indeed, it was shown that at least some of the seven mem-
bers of the VSR family in Arabidopsis exhibit Ca2+-dependent
binding to ligands (Watanabe et al., 2002, 2004). It was recently
shown that the concentration of Ca2+ in Golgi is ;0.7 µM
(Ordenes et al., 2012), much lower than that in the ER where
Ca2+ concentrations are in the mM range.
In conclusion, we measured the pH in the lumen of in-

tracellular compartments of the endomembrane system in
plants. Using a vacuolar receptor to target the sensor to
intermediate compartments between the Golgi and vacuole,
we also identified the existence of a complex population of
organelles and of luminal pH tuning which is likely to be
critical in transport of soluble proteins to the vacuole. Future
experiments should further analyze changes in pH together
with dynamic trafficking processes in order to correlate pH
with organelle maturation, as proposed recently for the
TGN/EE (Scheuring et al., 2011), and pH homeostasis. It
would also be interesting to assess receptor ligand binding
in vivo, particularly since the pH reported here for the TGN
and late PVC is contrary to what was predicted from in vitro
studies.

Figure 10. A Model Comparing the Steady State pH of Compartments in
the Secretory Pathway of Tobacco Epidermal Cells and Animal Cells.

Colors of the lumen correspond to the steady state pH in plant in-
tracellular compartments and marked with the approximate pH mea-
sured in this study. RE, recycling endosome; EE, early endosome; LE,
late endosome; LPVC, late prevacuolar compartment.
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METHODS

Constructs

We used pHluorin (Bagar et al., 2009) to generate several genetically en-
coded pH sensors and target to specific intracellular compartments (see
Table 1 for the list andSupplemental Table 1online). To target the sensor to
the ER lumen, the signal peptide from tobacco (Nicotiana tabacum) chiti-
nase (Di Sansebastiano et al., 1998) and the tetrapeptide HDEL (Gomord
et al., 1997) was used. To label trans-Golgi, we used part of themammalian
sialyl transferase as described previously (Boevink et al., 1998; Wee et al.,
1998). The fusion of pHluorin at this position results in the luminal locali-
zation of the pH sensor. For VSR fusion proteins (see Supplemental Figure
11 for sequence details and Supplemental Table 1 online) the pHluorin
coding sequence was placed between the signal peptide and the mature
sequence of At-VSR2;1 (Saint-Jean et al., 2010) in which N terminus is
luminal (Kirsch et al., 1994). Aleu-pH was made by fusion of the petunia
(Petuniahybrida)aleurainsignalpeptideandvacuolarsortingsignal (Humair
et al., 2001) before the pHluorin coding sequence.

Transient and Stable Expression

For transientexpression in leaves,3- to4-week-old tobacco (N. tabacumcv
SR1) plantswere infiltratedwithAgrobacterium tumefaciens strainGV3101
p2260 as described previously (Sparkes et al., 2006). A small lesion to the
leaves facilitated the transformation (infiltration solution OD600 = 0.1).

For colocalization studies, we used red fluorescent fusion constructs
that were previously described: pVHAa1:genomicVHAa1-mRFP (Uemura
et al., 2012), p35s:NHX5-mRFP (Bassil et al., 2011b), p35s:NHX6-YFP
(Bassil et al., 2011b), p35s:ST-RFP (Saint-Jore et al., 2002), p35s:SYP61-
mRFP (Foresti et al., 2010), and pUBQ10:Rha1-mcherry (Geldner et al., 2009).

Stable transformations ofArabidopsis thaliana ecotypeColumbia-0were
performed according to the floral dip method (Clough and Bent, 1998).

Confocal Microscopy

We observed samples 48 to 72 h after transient expression in tobacco
epidermal cells or from 4- to 5-day-old root tip cells of stably transformed
Arabidopsis.Unlessstatedotherwise, tobaccoplantswerekept in8-h:16-h
light:dark cycles during transient expression. For pH measurements of
pHluorin, imageswere takenonaLSM510METAconfocalmicroscope, set
withsequentialexcitationat405nm/488nmandsingleemissionband-pass
505 to 530 nm. For colocalization experiments, a Zeiss LSM 780 confocal
imagingsystemrunning in line-by-linesequentialscanningmodewasused,
at 405-nm/488-nm excitation with a 505 to 530 photomultiplier (PMT)
setting for pHluorin and at 561-nmexcitationwith a 585 to 610PMTsetting
for all red fluorochromes.

Images were acquired with a 363 PL-APO 1.4 oil objective with time
integration of one frame per second. Theoretical xy- and z-axis resolutions
were 70 and 160 nm (1 airy unit), respectively. Frame size of the image was
45 µm with a 16-bit color depth.

Images were processed using Adobe Photoshop F1 4.0 software.

pH Measurements

Recombinant pHluorin was produced in bacteria by induction with 1 mM
isopropyl b-D-1-thiogalactopyranoside for 4 h. Bacteria were harvested
and washed three times in water. The pellets were broken by sonication
in phosphate buffer (10 mM Na2HPO4 and 2 mM KH2PO4). In situ cali-
brationswere performed for each individual confocal observation session.
An aliquot of recombinant pHluorin was diluted in a series of buffers:
MES-KOH or HEPES-KOH at different pH from 5 to 8.5. The ratio values
were plotted as a function of pH, and a Boltzmann equation was used to fit
sigmoidal curves with calibration data as described previously (Gao et al.,

2004; Schulte et al., 2006). The following equation was used (Graphpad
Prism):

R ¼ Rmin þ ðRmax2RminÞ=
�
1þ expðpKa-pHÞ

�

where R is the ratio value for a given pH, Rmin and Rmax designate the
maximum and the minimum ratio obtained at either high or low pH, and
pKa designates pH value when half of the pHluorin is protonated.

Prior to data acquisition, we set the PMT offset with nontransformed
plants to standardize the background. For each treatment, 10 to 20 cells
were analyzed, and pH values were extrapolated out of the sigmoidal
function obtained from in vitro calibration curves.

Colocalization Analysis

In order toquantify theextent of colocalizationbetweencompartments, we
calculated the minimal distance between particle centroids using Velocity
software (Perkin-Elmer). To confirm the method, we performed three
experiments: (1) With 500-nm multicolor beads (TetraSpeck Fluorescent
microsphere; Molecular Probes), we obtained a mean distance of 47 nm
(see Supplemental Figure 2A online); (2) to analyze the degree of coloc-
alization invivo,wecoexpressedthe trans-GolgimarkerSTfusedwitheither
pHluorinorRFP (seeSupplementalFigure2Bonline); and (3) toestimate the
association of compartments, coexpression of thecis-Golgimarker ERD2-
CFP with the trans-Golgi marker ST-RFP (see Supplemental Figure 2C
online) was performed. We obtained average distances of 60 nm for
compartment colocalization and 125 nm for associated compartments in
vivo. Furthermore, given that the mean radius of the VSR compartment
obtained electron microscopy studies was 450 nm, we set 500 nm as the
maximum distance at which we can consider two organelles to be asso-
ciatedormaturing.Weconsideredparticles at a distance shorter than 125nm
to be colocalized, those between 125 and 500 nm to be associated (see
Supplemental Figure 2 online, shaded areas), and those over 500 nm apart
to be distinct. Quantification of colocalization data is expressed in per-
centage of organelles, with 100% representing the total number of or-
ganelles analyzed.

To relate pH with colocalization, individual organelles labeled with
pHluorinwere identifiedusing Image J. ThemeanpHwas then calculated for
eachorganelle thatwas also analyzed for colocalizationasdescribed above.

Statistical Analysis

Measurements of pH were compared using ANOVA followed, when
necessary, by a post hoc test (Tukey’s Honestly Significant Difference)
using the open-source statistical computing R software (Free Software
Foundation; http://www.gnu.org/software/r/). For each condition, at least
two biological replicates of 10 cells were used, which represent more
than 100 individual compartments per condition. To allow robust sta-
tistical analysis, we excluded pHmeasurements from any subpopulations
of compartments representing <10% of the total number of labeled
compartments.

Drug Treatments

Drug treatment was performed by infiltrating a piece of leaf for 60min prior
to observation. Latrunculin B was used at 25 µM (Calbiochem), wort-
mannin at 10 µM (Sigma-Aldrich), concanamycin at 1 µM, and amiloride
hydrochloride (Euromedex) at 200 µM.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome
Initiative or GenBank/EMBL databases under the following accession
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numbers: VSR2.1, At2g14720; ERD2, At1g29330; NHX5, At1g54370;
NHX6, At1g79610; Rha1, At5g45130; VHA-a1, At2g28520; and SYP61,
At1g28490.
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