ON THE COVER

Xylem vessels develop patterned secondary cell walls. Cortical microtubules are well known to guide the deposition of the secondary cell walls, yet knowledge about the proteins that directly regulate cortical microtubule dynamics is limited. Oda and Fukuda (pages 4439–4450) demonstrated that Arabidopsis Kinesin-13A is recruited to the future secondary pit area through the ROP11-MIDD1 pathway and locally depolymerizes cortical microtubules, which prevents secondary wall formation. The cover shows the cortex of differentiating cultured xylem cells expressing GFP-Kinesin-13A (green). Kinesin-13A is preferentially localized at the cortical microtubules in pits of the secondary walls (magenta).

IN BRIEF

Towards Breeding Strong but Fine Cotton Fibers with a Little Help from WLIM1a
Jennifer Lockhart 4281

Breaking Down the Complex Regulatory Web Underlying Lignin Biosynthesis
Jennifer Lockhart 4282

Small RNAs and the Big Decisions: MicroRNA Regulation of Photoperiodic Flowering in Brachypodium distachyon
Jennifer Mach 4283

Calmodulin Methylation: Another Layer of Regulation in Calcium Signaling
Nancy R. Hofmann 4284

LARGE-SCALE BIOLOGY ARTICLES

Spatio-Temporal Transcript Profiling of Rice Roots and Shoots in Response to Phosphate Starvation and Recovery
David Secco, Mehdi Jabnoune, Hayden Walker, Huixia Shou, Ping Wu, Yves Poirier, and James Whelan 4285

Systems-Level Analysis of Nitrogen Starvation–Induced Modifications of Carbon Metabolism in a Chlamydomonas reinhardtii Starchless Mutant
Ian K. Blaby, Anne G. Gaesener, Tabea Mettler, Sorel T. Fitz-Gibbon, Sean D. Gallaher, Bensheng Liu, Nanette R. Boyle, Janette Kropat, Mark Stitt, Shannon Johnson, Christoph Benning, Matteo Pellegrini, David Casero, and Sabeeha S. Merchant 4305

SND1 Transcription Factor–Directed Quantitative Functional Hierarchical Genetic Regulatory Network in Wood Formation in Populus trichocarpa
Ying-Chung Lin, Wei Li, Ying-Hsuan Sun, Sapna Kumari, Hairong Wei, Quanzi Li, Sermsawat Tuniya-Anukit, Ronald R. Sederoff, and Vincent L. Chiang 4324

A Genomics Approach to Deciphering Lignin Biosynthesis in Switchgrass

RESEARCH ARTICLES

Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon
Liang Wu, Dongfeng Liu, Jiajie Wu, Rongzhi Zhang, Zhengrui Qin, Danmei Liu, Ali Li, Daolin Fu, Wunxue Zhai, and Long Mao 4363
The Cold Signaling Attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 Activates FLOWERING LOCUS C Transcription via Chromatin Remodeling under Short-Term Cold Stress in Arabidopsis

Jae-Hoon Jung, Ju-Hyung Park, Sangmin Lee, Taiko Kim To, Jong-Myong Kim, Motoaki Seki, and Chung-Mo Park

HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 Is Required for Circadian Periodicity through the Promotion of Nucleo-Cytoplasmic mRNA Export in Arabidopsis

Dana R. MacGregor, Peter Gould, Julia Foreman, Jayne Griffiths, Susannah Bird, Rhiannon Paige, Kelly Stewart, Gavin Steel, Jack Young, Konrad Paszkiewicz, Andrew J. Millar, Karen J. Halliday, Anthony J. Hall, and Steven Penfield

Blue Light–Dependent Interaction between Cryptochrome2 and CIB1 Regulates Transcription and Leaf Senescence in Soybean

Yingying Meng, Hongyu Li, Qin Wang, Bin Liu, and Chentao Lin

The Dual Functions of WLIM1a in Cell Elongation and Secondary Wall Formation in Developing Cotton Fibers

Li-Bo Han, Yuan-Bao Li, Hai-Yun Wang, Xiao-Min Wu, Chun-Li Li, Ming Luo, Shen-Jie Wu, Zhao-Sheng Kong, Yan Pei, Gai-Li Jiao, and Gui-Xian Xia

Rho of Plant GTPase Signaling Regulates the Behavior of Arabidopsis Kinesin-13A to Establish Secondary Cell Wall Patterns

Yoshihisa Oda and Hiroo Fukuda

Plastid-Localized Glutathione Reductase2–Regulated Glutathione Redox Status Is Essential for Arabidopsis Root Apical Meristem Maintenance

Xin Yu, Taras Pasternak, Monika Eiblmeier, Franck Ditengou, Philip Kochersperger, Jiaqiang Sun, Hui Wang, Heinz Rennenberg, William Teale, Ivan Paponov, Wenkun Zhou, Chuanyou Li, Xugang Li, and Klaus Palme

RETINOBLASTOMA-RELATED Protein Stimulates Cell Differentiation in the Arabidopsis Root Meristem by Interacting with Cytokinin Signaling

Serena Perilli, José Manuel Perez-Perez, Riccardo Di Mambro, Cristina Llavata Peris, Sara Díaz-Triviño, Marta Del Bianco, Emanuela Pierdonati, Laila Moubyyadin, Alfredo Cruz-Ramirez, Paolo Costantino, Ben Scheres, and Sabrina Sabatini

MICROTUBULE-ASSOCIATED PROTEIN65 Is Essential for Maintenance of Phragmoplast Bipolarity and Formation of the Cell Plate in Physcomitrella patens

Ken Kosetsu, Jeroen de Keijzer, Marcel E. Janson, and Gohta Goshima

Calmodulin-Mediated Signal Transduction Pathways in Arabidopsis Are Fine-Tuned by Methylation

Joydeep Banerjee, Roberta Magnani, Meera Nair, Lynnette M. Dirk, Seth DeBolt, Indu B. Maiti, and Robert L. Houtz

Comparing the Calcium Binding Abilities of Two Soybean Calmodulins: Towards Understanding the Divergent Nature of Plant Calmodulins

Jessica L. Gifford, Mostafa Jamshidiha, Jeffrey Mo, Hiroaki Ishida, Seth DeBolt, Indu B. Maiti, and Robert L. Houtz

Pollin Tube Growth Regulation by Free Anions Depends on the Interaction between the Anion Channel SLAH3 and Calcium-Dependent Protein Kinases CPK2 and CPK20

Timo Gutermuth, Roman Lassig, Maria-Teresa Portes, Tobias Maierhofer, Tina Romeis, Jan-Willem Borst, Rainer Hedrich, José A. Feijo, and Kai R. Konrad

The Actin-Related Protein2/3 Complex Regulates Mitochondrial-Associated Calcium Signaling during Salt Stress in Arabidopsis

Yi Zhao, Zhen Pan, Yan Zhang, Xiaolu Qu, Yuguo Zhang, Yongqing Yang, Xiangning Jiang, Shanjin Huang, Ming Yuan, Karen S. Schumaker, and Yan Guo

Subchromoplast Sequestration of Carotenoids Affects Regulatory Mechanisms in Tomato Lines Expressing Different Carotenoid Gene Combinations

Marilise Nogueira, Leticia Mora, Eugenia M.A. Enfissi, Peter M. Bramley, and Paul D. Fraser
A γ-Glutamyl Cyclotransferase Protects Arabidopsis Plants from Heavy Metal Toxicity by Recycling Glutamate to Maintain Glutathione Homeostasis

A BAR-Domain Protein SH3P2, Which Binds to Phosphatidylinositol 3-Phosphate and ATG8, Regulates Autophagosome Formation in Arabidopsis

Catalase and NO CATALASE ACTIVITY1 Promote Autophagy-Dependent Cell Death in Arabidopsis

Arabidopsis 56–Amino Acid Serine Palmitoyltransferase-Interacting Proteins Stimulate Sphingolipid Synthesis, Are Essential, and Affect Mycotoxin Sensitivity

Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis Flowers

MAIGO5 Functions in Protein Export from Golgi-Associated Endoplasmic Reticulum Exit Sites in Arabidopsis

Two Rumex Species from Contrasting Hydrological Niches Regulate Flooding Tolerance through Distinct Mechanisms

The Arabidopsis NAC Transcription Factor ANAC096 Cooperates with bZIP-Type Transcription Factors in Dehydration and Osmotic Stress Responses

Jumonji C Domain Protein JMJ705-Mediated Removal of Histone H3 Lysine 27 Trimethylation Is Involved in Defense-Related Gene Activation in Rice

Two Herbivore-Induced Cytochrome P450 Enzymes CYP79D6 and CYP79D7 Catalyze the Formation of Volatile Aldoximes Involved in Poplar Defense
Pathogen-Triggered Ethylene Signaling Mediates Systemic-Induced Susceptibility to Herbivory in Arabidopsis

Simon C. Groen, Noah K. Whiteman, Adam K. Bahrami, Amy M. Wilczek, Jianping Cui, Jacob A. Russell, Angelica Cibrian-Jaramillo, Ian A. Butler, Jignasha D. Rana, Guo-Hua Huang, Jenifer Bush, Frederick M. Ausubel, and Naomi E. Pierce

CORRECTION


Some figures in this article are displayed in color online but in black and white in the print edition.

Online version contains Web-only data.

Articles can be viewed online without a subscription.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>eTOCs</td>
<td>Sign up for eTOCs at:</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.plantcell.org/cgi/alerts/ctmain">http://www.plantcell.org/cgi/alerts/ctmain</a></td>
</tr>
<tr>
<td>CiteTrack Alerts</td>
<td>Sign up for CiteTrack Alerts at:</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.plantcell.org/cgi/alerts/ctmain">http://www.plantcell.org/cgi/alerts/ctmain</a></td>
</tr>
<tr>
<td>Subscription Information</td>
<td>Subscription Information for The Plant Cell and Plant Physiology is available at:</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.aspb.org/publications/subscriptions.cfm">http://www.aspb.org/publications/subscriptions.cfm</a></td>
</tr>
</tbody>
</table>

© American Society of Plant Biologists
ADVANCING THE SCIENCE OF PLANT BIOLOGY