ON THE COVER

The Tannat grape berry is used to produce high quality wines with an intense purple color and remarkable antioxidant properties. Through reference-guided assembly of the genome combined with de novo assembly of the transcriptome, Da Silva et al. (pages 4777–4788) found variety-specific genes not present in the Pinot Noir reference genome that might contribute substantially to the unique characteristics of the Tannat berry. The cover image by Jules Troncy is from Ampélographie – Traité général de viticulture. Tome IV. 1903 by Pierre Viala and Victor Vermorell. Imp. F. Champenois, Paris.

IN BRIEF

Out with the Old: The Fate of Obsolete Peroxisomes
Kathleen L. Farquharson

Embracing Diversity: Uncovering the Mechanism Underlying Interhomologous Recombination Bias during Meiosis
Jennifer Lockhart

A NAC Transcription Factor for Flooding: SHYG Helps Plants Keep Their Leaves in the Air
Nancy R. Hofmann

Getting There Faster: Genome-Wide Association Studies Point the Way to Increasing Nutritional Values
Nancy R. Hofmann

COMMENTARIES

The Plant Science Decadal Vision
Cathie Martin

The Plant Science Decadal Vision: Response to the Martin Commentary
David Stern and Sally Mackenzie

LARGE-SCALE BIOLOGY ARTICLES

The High Polyphenol Content of Grapevine Cultivar Tannat Berries Is Confirmed Primarily by Genes That Are Not Shared with the Reference Genome
Cecilia Da Silva, Gianpiero Zamperin, Alberto Ferrarini, Andrea Minio, Alessandra Dal Molin, Luca Venturini, Genny Buson, Paola Tononi, Carla Avanzato, Elisa Zago, Eduardo Boido, Eduardo Dellacassa, Carina Gaggero, Mario Pezzotti, Francisco Carrau, and Massimo Delledonne

Abscisic Acid–Responsive Guard Cell Metabolomes of Arabidopsis Wild-Type and gpa1 G-Protein Mutants
Xiaofen Jin, Rui-Sheng Wang, Mengmeng Zhu, Byeong Wook Jeon, Reka Albert, Sixue Chen, and Sarah M. Assmann

CAROTENOID CLEAVAGE DIOXYGENASE4 Is a Negative Regulator of β-Carotene Content in Arabidopsis Seeds
Sabrina Gonzalez-Jorge, Sun-Hwa Ha, Maria Magallanes-Lundback, Laura Ulrich Gilliland, Ailing Zhou, Alexander E. Lipka, Yen-Nhu Nguyen, Ruthie Angelovici, Haining Lin, Jason Cepela, Holly Little, C. Robin Buell, Michael A. Gore, and Dean DellaPenna
RESEARCH ARTICLES

Genome-Wide Analysis of Branched-Chain Amino Acid Levels in Arabidopsis Seeds

Ruthie Angelovici, Alexander E. Lipka, Nicholas Deason, Sabrina Gonzalez-Jorge, Haining Lin, Jason Cepela, Robin Buell, Michael A. Gore, and Dean DellaPenna

The Trans-Acting Short Interfering RNA3 Pathway and NO APICAL MERISTEM Antagonistically Regulate Leaf Margin Development and Lateral Organ Separation, as Revealed by Analysis of an argonaute7/lobed leaflet1 Mutant in Medicago truncatula

Chuanzhen Zhou, Lu Han, Chunxiang Fu, Jiangqi Wen, Xiaofei Cheng, Jin Nakashima, Junying Ma, Yuhong Tang, Yang Tan, Million Tadega, Kirankumar S. Mysore, Guangmin Xia, and Zeng-Yu Wang

ABA-INSENSITIVE3, ABA-INSENSITIVE5, and DELLAs Interact to Activate the Expression of SOMNUS and Other High-Temperature-Inducible Genes in Imbibed Seeds in Arabidopsis

Soohwan Lim, Jeongmoo Park, Nayoung Lee, Jinkil Jeong, Shigeo Toh, Asuka Watanabe, Junghyun Kim, Hyojin Kang, Dong Hwan Kim, Naoto Kawakami, and Giltsu Choi

Arabidopsis ERG28 Tethers the Sterol C4-Demethylation Complex to Prevent Accumulation of a Biosynthetic Intermediate That Interferes with Polar Auxin Transport

Alexis Samba Mialoundama, Nurul Jadid, Julien Brunel, Thomas Di Pascoli, Dimitri Heintz, Mathieu Erhardt, Jérôme Mutterer, Marc Bergdoll, Daniel Ayoub, Alain Van Dorsselaer, Alain Rahier, Paul Nkeng, Philippe Geoffroy, Michel Miesch, Bilal Malama, and Florence Bouvier

Phosphatidylinositol 4,5-Bisphosphate Influences PIN Polarization by Controlling Clathrin-Mediated Membrane Trafficking in Arabidopsis

Till Ischebeck, Stephanie Werner, Praveen Krishnamoorthy, Jennifer Lerche, Mónica Mejón, Irene Stenzel, Christian Löfke, Theresa Wiessner, Yang Ju Im, Imara Y. Perera, Tim Iven, Ivo Feussner, Wolfgang Busch, Wendy F. Boss, Thomas Teichmann, Bettina Hause, Staffan Persson, and Ingo Heilmann

CELLULOSE SYNTHASE INTERACTIVE3 Regulates Cellulose Biosynthesis in Both a Microtubule-Dependent and Microtubule-Independent Manner in Arabidopsis

Lei Lei, Shundai Li, Juan Du, Logan Bashline, and Ying Gu

Sufficient Amounts of Functional HOP2/MND1 Complex Promote Interhomolog DNA Repair but Are Dispensable for Interister DNA Repair during Meiosis in Arabidopsis

Clemens Uanschou, Arnaud Ronceret, Mona Von Harder, Arnaud De Muyt, Daniel Vezon, Lucie Pereira, Liudmila Chelysheva, Wataru Kobayashi, Hitoshi Kurumizaka, Peter Schlöglhofer, and Mathilde Grelon

NAC Transcription Factor SPEEDY HYPERSONASTIC GROWTH Regulates Flooding-Induced Leaf Movement in Arabidopsis

Mamona Rauf, Muhammad Arif, Joachim Fisahn, Gang-Ping Xue, Salma Balazadeh, and Bernd Mueller-Roeber

Autophagy-Related Proteins Are Required for Degradation of Peroxisomes in Arabidopsis Hypocotyls during Seedling Growth

Jini Kim, Heeun Lee, Han Nim Lee, Soon-Hee Kim, Kwang Deok Shin, and Taijoon Chung

Highly Oxidized Peroxisomes Are Selectively Degraded via Autophagy in Arabidopsis

Michtaro Shibata, Kazusato Oikawa, Kohki Yoshimoto, Maki Kondo, Shoji Mano, Kenji Yamada, Makoto Hayashi, Wataru Sakamoto, Yoshinori Ohsumi, and Mikio Nishimura

Arabidopsis Chlorophyll Biosynthesis: An Essential Balance between the Methylenetetrahydrofolate Phosphate and Tetrapyrrole Pathways

Se Kim, Hagen Schlicke, Kalie Van Ree, Kristine Karvonen, Anant Subramaniam, Andreas Richter, Bernhard Grimm, and Janet Braam

Arabidopsis Kelch Repeat F-Box Proteins Regulate Phenylpropanoid Biosynthesis via Controlling the Turnover of Phenylalanine Ammonia-Lyase

Xuebin Zhang, Mingyue Gou, and Chang-Jun Liu
Arabidopsis Phosphoglycerate Dehydrogenase1 of the Phosphoserine Pathway Is Essential for Development and Required for Ammonium Assimilation and Tryptophan Biosynthesis
Ruben Maximilian Benstein, Katja Ludewig, Sabine Wulfert, Sebastian Wittek, Tamara Gigolashvili, Henning Frerigmann, Markus Gierth, Ulf-Ingo Flügge, and Stephan Krueger

Phosphatidic Acid Interacts with a MYB Transcription Factor and Regulates Its Nuclear Localization and Function in Arabidopsis
Hongyan Yao, Geliang Wang, Liang Guo, and Xuemin Wang

Characterization of Solanum tuberosum Multicystatin and the Significance of Core Domains
Abigail R. Green, Mark S. Nissen, G.N. Mohan Kumar, N. Richard Knowles, and ChulHee Kang

Calcium/Calmodulin-Dependent Protein Kinase Is Negatively and Positively Regulated by Calcium, Providing a Mechanism for Decoding Calcium Responses during Symbiosis Signaling

Some figures in this article are displayed in color online but in black and white in the print edition.

Online version contains Web-only data.

Articles can be viewed online without a subscription.