ON THE COVER

The Tannat grape berry is used to produce high quality wines with an intense purple color and remarkable antioxidant properties. Through reference-guided assembly of the genome combined with de novo assembly of the transcriptome, Da Silva et al. (pages 4777–4788) found variety-specific genes not present in the Pinot Noir reference genome that might contribute substantially to the unique characteristics of the Tannat berry. The cover image by Jules Troncy is from Ampélographie – Traité général de viticulture. Tome IV. 1903 by Pierre Viala and Victor Vermorell. Imp. F. Champenois, Paris.

IN BRIEF

Out with the Old: The Fate of Obsolete Peroxisomes
Kathleen L. Farquharson

4769

Embracing Diversity: Uncovering the Mechanism Underlying Interhomologous Recombination Bias during Meiosis
Jennifer Lockhart

4770

A NAC Transcription Factor for Flooding: SHYG Helps Plants Keep Their Leaves in the Air
Nancy R. Hofmann

4771

Getting There Faster: Genome-Wide Association Studies Point the Way to Increasing Nutritional Values
Nancy R. Hofmann

4772

COMMENTARIES

The Plant Science Decadal Vision
Cathie Martin

4773

The Plant Science Decadal Vision: Response to the Martin Commentary
David Stern and Sally Mackenzie

4775

LARGE-SCALE BIOLOGY ARTICLES

The High Polyphenol Content of Grapevine Cultivar Tannat Berries Is Confirmed Primarily by Genes That Are Not Shared with the Reference Genome
Cecilia Da Silva, Gianpiero Zamperin, Alberto Ferrarini, Andrea Minio, Alessandra Dai Molin, Luca Venturini, Genny Buson, Paola Tononi, Carla Avanzato, Elisa Zago, Eduardo Boido, Eduardo Dellacassa, Carina Gaggero, Mario Pezzotti, Francisco Carrau, and Massimo Delledonne

4777

Abscisic Acid–Responsive Guard Cell Metabolomes of Arabidopsis Wild-Type and gpa1 G-Protein Mutants
Xiaofen Jin, Rui-Sheng Wang, Mengmeng Zhu, Byeong Wook Jeon, Reka Albert, Sixue Chen, and Sarah M. Assmann

4789

CAROTENOID CLEAVAGE DIOXYGENASE4 Is a Negative Regulator of β-Carotene Content in Arabidopsis Seeds
Sabrina Gonzalez-Jorge, Sun-Hwa Ha, Maria Magallanes-Lundback, Laura Ulrich Gilliland, Ailing Zhou, Alexander E. Lipka, Yen-Nhu Nguyen, Ruthie Angelovici, Haining Lin, Jason Cepela, Holly Little, C. Robin Buell, Michael A. Gore, and Dean DellaPenna

4812
RESEARCH ARTICLES

The Trans-Acting Short Interfering RNA3 Pathway and NO APICAL MERISTEM Antagonistically Regulate Leaf Margin Development and Lateral Organ Separation, as Revealed by Analysis of an argonaute7/lobed leaflet1 Mutant in Medicago truncatula
Chuanzhou Zhou, Lu Han, Chunxiang Fu, Jiangqi Wen, Xiaofei Cheng, Jin Nakashima, Junying Ma, Yuhong Tang, Yang Tan, Million Tadege, Kirankanam S. Mysores, Guangxin Xua, and Zeng-Yu Wang

ABA-INSENSITIVE3, ABA-INSENSITIVE5, and DELLAs Interact to Activate the Expression of SOMNUS and Other High-Temperature-Inducible Genes in Imbibed Seeds in Arabidopsis
Soohwan Lim, Jeongmoo Park, Nayoung Lee, Jinikl Jeong, Shigeo Toh, Asuka Watanabe, Junhyung Kim, Hyojin Kang, Dong Hwan Kim, Naoto Kawakami, and Gilsu Choi

Arabidopsis ERG28 Tethers the Sterol C4-Demethylation Complex to Prevent Accumulation of a Biosynthetic Intermediate That Interferes with Polar Auxin Transport
Alexis Samba Mialoundama, Nurul Jadid, Julien Brunel, Thomas Di Pascoli, Dimitri Heintz, Mathieu Erhardt, Jérôme Mutterer, Marc Bergdoll, Daniel Ayoub, Alain Van Dorsselaer, Alain Rahier, Paul Nkeng, Philippe Geoffroy, Michel Miesch, Bilal Camara, and Florence Bouvier

Phosphatidylinositol 4,5-Bisphosphate Influences PIN Polarization by Controlling Clathrin-Mediated Membrane Trafficking in Arabidopsis
Till Ischebeck, Stephanie Werner, Praveen Krishnamoorthy, Jennifer Lerche, Mónica Mejón, Irene Stenzel, Christian Löfke, Theresa Wiessner, Yang Ju Im, Imara Y. Perera, Tim Iven, Ivo Feussner, Wolfgang Busch, Wendy F. Boss, Thomas Teichmann, Bettina Hause, Staffan Persson, and Ingo Heilmann

CELLOUSE SYNTHASE INTERACTIVE3 Regulates Cellulose Biosynthesis in Both a Microtubule-Dependent and Microtubule-Independent Manner in Arabidopsis
Lei Lei, Shundai Li, Juan Du, Logan Bashline, and Ying Gu

Sufficient Amounts of Functional HOP2/MND1 Complex Promote Interhomolog DNA Repair but Are Dispensable for Intersister DNA Repair during Meiosis in Arabidopsis
Clemens Uanschou, Arnaud Ronceret, Mona Von Harder, Arnaud De Muyt, Daniel Vezon, Lucie Pereira, Liudmila Chelysheva, Wataru Kobayashi, Hitoshi Kurumizaka, Peter Schögelhofer, and Mathilde Grelon

NAC Transcription Factor SPEEDY HYPONASTIC GROWTH Regulates Flooding-Induced Leaf Movement in Arabidopsis
Mamona Rauf, Muhammad Arif, Joachim Fisahn, Gang-Ping Xue, Salma Balazadeh, and Bernd Mueller-Roeber

Autophagy-Related Proteins Are Required for Degradation of Peroxisomes in Arabidopsis Hypocotyls during Seedling Growth
Jimi Kim, Heeeun Lee, Han Nim Lee, Soon-Hee Kim, Kwang Deok Shin, Thomas Teichmann, Bettina Hause, Staffan Persson, and Ingo Heilmann

Highly Oxidized Peroxisomes Are Selectively Degraded via Autophagy in Arabidopsis
Michtaro Shibata, Kazusato Oikawa, Kohki Yoshimoto, Maki Kondo, Shoji Mano, Kenji Yamada, Makoto Hayashi, Wataru Sakamoto, Yoshinori Ohsumi, and Mikio Nishimura

Arabidopsis Chlorophyll Biosynthesis: An Essential Balance between the Methylythritol Phosphate and Tetrapyrrole Pathways
Se Kim, Hagen Schlicke, Kalie Van Ree, Kristine Karvonen, Anant Subramaniam, Andreas Richter, Bernhard Grimm, and Janet Braam

Arabidopsis Keilch Repeat F-Box Proteins Regulate Phenylpropanoid Biosynthesis via Controlling the Turnover of Phenylalanine Ammonia-Lyase
Xuebin Zhang, Mingyue Gou, and Chang-Jun Liu
Arabidopsis Phosphoglycerate Dehydrogenase1 of the Phosphoserine Pathway Is Essential for Development and Required for Ammonium Assimilation and Tryptophan Biosynthesis

Ruben Maximilian Benstein, Katja Ludewig, Sabine Wulfert, Sebastian Wittek, Tamara Gigolashvili, Henning Frerigmann, Markus Gierth, Ulf-Ingo Flügge, and Stephan Krüeger

Phosphatidic Acid Interacts with a MYB Transcription Factor and Regulates Its Nuclear Localization and Function in Arabidopsis

Hongyan Yao, Geliang Wang, Liang Guo, and Xuemin Wang

Characterization of Solanum tuberosum Multicystatin and the Significance of Core Domains

Abigail R. Green, Mark S. Nissen, G.N. Mohan Kumar, N. Richard Knowles, and ChulHee Kang

Calcium/Calmodulin-Dependent Protein Kinase Is Negatively and Positively Regulated by Calcium, Providing a Mechanism for Decoding Calcium Responses during Symbiosis Signaling


Some figures in this article are displayed in color online but in black and white in the print edition.

Online version contains Web-only data.

Articles can be viewed online without a subscription.