Molecular mechanisms regulating dormancy in overwintering buds (OWBs) in herbaceous perennials such as gentian (Gentiana) are unclear. Takahashi et al. (pages 3949–3963) conducted targeted metabolome analysis to obtain clues about the metabolic mechanisms involved in regulating OWB dormancy. The results show that the oligosaccharide gentiobiose accumulates prior to budbreak and acts as a signal for dormancy release of gentian through the ascorbate-GSH pathway. The cover shows Gentiana triflora cv Iwate Yumeaoi, cultivated from a wild gentian species native to higher elevation meadows, forests, hills, and mountains of China, Mongolia, Eastern Russia, Korea, and Japan.
Differential Nuclease Sensitivity Profiling of Chromatin Reveals Biochemical Footprints Coupled to Gene Expression and Functional DNA Elements in Maize.

A Functional and Evolutionary Perspective on Transcription Factor Binding in Arabidopsis thaliana.

Ken S. Heyndrickx, Jan Van de Velde, Congmao Wang, Detlef Weigel, and Klaas Vandepoele

Differentially Phased Leaf Growth and Movements in Arabidopsis Depend on Coordinated Circadian and Light Regulation.

Tino Dornbusch, Olivier Michaud, Ioannis Xenarios, and Christian Funkhauser

RESEARCH ARTICLES

Chromatin-Dependent Repression of the Arabidopsis Floral Integrator Genes Involves Plant Specific PHD-Containing Proteins.

Leticia López-González, Alfonso Mouriz, Laura Narro-Diego, Regla Bustos, José Miguel Martínez-Zapater, Jose A. Jarillo, and Manuel Piñeiro

Nonsyntenic Genes Drive Highly Dynamic Complementation of Gene Expression in Maize Hybrids.

Anja Paschold, Nick B. Larson, Caroline Marcon, James C. Schnable, Cheng-Ting Yeh, Christa Nettleton, Hans-Peter Piepho, Patrick S. Schnable, and Frank Hochholdinger

The Gentio-Oligosaccharide Gentiobiose Functions in the Modulation of Bud Dormancy in the Herbaceous Perennial Gentiana.

Hideyuki Takahashi, Tomohiro Imamura, Naotake Konno, Takumi Takeda, Kohei Fujita, Teruko Konishi, Masahiro Nishihara, and Hirofumi Uchimiya

Jasmonoyl-L-Isoleucine Coordinates Metabolic Networks Required for Anthesis and Floral Attractant Emission in Wild Tobacco (Nicotiana attenuata).

Michael Stitz, Markus Hartl, Ian T. Baldwin, and Emmanuel Gaquerel

The Arabidopsis Ethylene/Jasmonic Acid-NRT Signaling Module Coordinates Nitrate Reallocation and the Trade-Off between Growth and Environmental Adaptation.

Guo-Bin Zhang, Hong-Ying Yi, and Ji-Ming Gong

Evening Expression of Arabidopsis GIGANTEA Is Controlled by Combinatorial Interactions among Evolutionarily Conserved Regulatory Motifs.

Markus C. Berns, Karl Nordström, Frédéric Cremer, Réka Tóth, Martin Hartke, Samson Simon, Jonas R. Klasen, Ingmar Bürster, and George Coupland

A Microbial Avenue to Cell Cycle Control in the Plant Superkingdom.

Frej Tulin and Frederick R. Cross

FAMA Is an Essential Component for the Differentiation of Two Distinct Cell Types, Myrosin Cells and Guard Cells, in Arabidopsis.

Makoto Shirakawa, Haruko Ueda, Atsushi J. Nagano, Tomoo Shimada, Takayuki Kohchi, and Ikuko Hara-Nishimura

Myrosin Idioblast Cell Fate and Development Are Regulated by the Arabidopsis Transcription Factor FAMA, the Auxin Pathway, and Vesicular Trafficking.

Meng Li and Fred D. Sack

Arabidopsis TTG2 Regulates TRY Expression through Enhancement of Activator Complex-Triggered Activation.

Martina Pesch, Burcu Darton, Rainer Birkenbihl, Imre E. Somssich, and Martin Hülskamp

Arabidopsis ATG8-INTERACTING PROTEIN1 Is Involved in Autophagy-Dependent Vesicular Trafficking of Plastid Proteins to the Vacuole.

Simon Michaeli, Arik Honig, Hanna Levanony, Hadas Peled-Zehavi, and Gad Galili
Trans-Golgi Network-Located AP1 Gamma Adaptins Mediate Dileucine Motif-Directed Vacuolar Targeting in Arabidopsis

Xiangfeng Wang, Yi Cai, Hao Wang, Yonglun Zeng, Xiaohong Zhuang, Baiying Li, and Liwen Jiang

Arabidopsis Lipins, PDAT1 Acyltransferase, and SDP1 Triacylglycerol Lipase Synergistically Direct Fatty Acids toward β-Oxidation, Thereby Maintaining Membrane Lipid Homeostasis

Jilian Fan, Chengshi Yan, Rebecca Roston, John Shanklin, and Changcheng Xu

Quantitative Peptidomics Study Reveals That a Wound-Induced Peptide from PR-1 Regulates Immune Signaling in Tomato

Ying-Lan Chen, Chi-Ying Lee, Kai-Tan Cheng, Wei-Hung Chang, Rong-Nan Huang, Hong Gil Nam, and Yet-Ran Chen

CYCLIN-DEPENDENT KINASE8 Differentially Regulates Plant Immunity to Fungal Pathogens through Kinase-Dependent and -Independent Functions in Arabidopsis

Yingfang Zhu, Craig M. Schlutenhoff, Pengcheng Wang, Fuyou Fu, Jyothi Thimmapuram, Jian-Kang Zhu, Sang Yeol Lee, Dae-Jin Yun, and Tesfaye Mengiste

Salicylic Acid Regulates Arabidopsis Microbial Pattern Receptor Kinase Levels and Signaling

Chika Tateda, Zhongqin Zhang, Jay Shrestha, Joanna Jelenska, Delphine Chinchilla, and Jean T. Greenberg

Nod Factor Receptors Form Heteromeric Complexes and Are Essential for Intracellular Infection in Medicago Nodules

Sjef Moling, Anna Pietraszewska-Bogiel, Marten Postma, Elena Fedorova, Mark A. Hink, Erik Limpens, Theodorus W.J. Gadella, and Ton Bisseling

UV-B-Responsive Association of the Arabidopsis bZIP Transcription Factor ELONGATED HYPOCOTYL5 with Target Genes, Including Its Own Promoter

Melanie Binkert, László Kozma-Bognár, Kata Terecskei, Lieven De Veylder, Ferenc Nagy, and Roman Ulm

Critical Function of a Chlamydomonas reinhardtii Putative Polyphosphate Polymerase Subunit during Nutrient Deprivation

Munevver Aksoy, Wirulda Pootakham, and Arthur R. Grossman

Some figures in this article are displayed in color online but in black and white in the print edition.

Online version contains Web-only data.

Articles can be viewed online without a subscription.

The Plant Cell (ISSN 1040-4651, online ISSN 1532-298X) is published monthly (one volume per year) by the American Society of Plant Biologists, 15501 Monona Drive, Rockville, MD 20855-2768, and is produced by Dartmouth Journal Services, Waterbury, VT. The institutional price for the print and online versions is based on type of institution; contact institution@aspb.org. Single copies may be purchased for $40 each, plus $10 shipping (U.S.) or $12 (outside U.S.). Members of the American Society of Plant Biologists may subscribe to The Plant Cell for $240. Nonmember individuals may subscribe for $500. Students may subscribe for $165. For matters regarding subscriptions, contact Suzanne Cholwek, ASPB headquarters.

Permission to Reprint: Permission to make digital or hard copies of part or all of a work published in The Plant Cell is granted without fee for personal or classroom use provided that copies are not made or distributed for profit or commercial advantage and that copies bear the full citation and the following notice on the first page: “Copyright American Society of Plant Biologists.” For all other kinds of copying, request permission in writing from Nancy A. Winchester, Publications Director, ASPB headquarters.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>eTOCs</td>
<td>Sign up for eTOCs at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>CiteTrack Alerts</td>
<td>Sign up for CiteTrack Alerts at: http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>Subscription Information</td>
<td>Subscription Information for The Plant Cell and Plant Physiology is available at: http://www.aspb.org/publications/subscriptions.cfm</td>
</tr>
</tbody>
</table>