ON THE COVER

Angiosperm trees produce a specialized type of xylem, tension wood, in response to gravity. Tension wood forms on the upper side of leaning branches and creates strong contractile force to “pull” the stem upwards against gravity. The article by Gerttula et al. (pages 2800–2813) describes the development of tension wood in Populus, including how the stems perceive and respond to gravity, as well as the transcriptional networks underlying tension wood development. The cover shows in situ imaging of XET activity in a tangential section of tension wood in Populus. Red signal is from XET incorporation of XXXG-SR into the specialized gelatinous layer of tension wood fibers, while blue signal is from UV autofluorescence of lignified cell walls. XET activity is believed to be important in force generation in tension wood fibers and serves as a marker for tension wood fiber development.

EDITORIAL

The Plant Cell Introduces Breakthrough Reports: A New Forum for Cutting-Edge Plant Research
Sabieha Merchant, Sebastian Y. Bednarek, James A. Birchler, George Coupland, Nancy A. Eckardt, Pascal Genschik, Jean Greenberg, Joseph J. Kieber, Daniel J. Kliebenstein, Barry J. Pogson, and David Smyth

IN BRIEF

Not Throwing Baby Out with the Bathwater
Peter Chien

A Sleep Like Death: Identification of Genes Related to Seed Longevity in Medicago truncatula and Arabidopsis
Jennifer Mach

Grasping at Straws: Unraveling the Proteome That Orchestrates Secondary Cell Wall Patterning in Tracheary Elements
Jennifer Lockhart

Leaf Growth Directionality Is Divergent and Involves a Conserved MicroRNA Regulatory Module
Nancy R. Hofmann

When a Tree Falls in the Woods: The Gravitropic Response in Poplar
Nancy R. Hofmann

VILLIN2 Emerges as a Master Builder in Rice
Kathleen L. Farquharson

Phytol from Degradation of Chlorophyll Feeds Biosynthesis of Tocopherols
Jennifer Mach

BREAKTHROUGH REPORT

Discovery of a Unique Cip Component, CipF, in Chloroplasts: A Proposed Binary CipF-CipS1 Adaptor Complex Functions in Substrate Recognition and Delivery
Kenji Nishimura, Janina Apitz, Giulia Friso, Jitae Kim, Lalit Ponnala, Bernhard Grimm, and Klaas J. van Wijk
LARGE-SCALE BIOLOGY ARTICLES

Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways
Karima Righetti, Joseph Ly Vu, Sandra Pelletier, Benoit Ly Vu, Enrico Glaab, David Lalanne, Asher Pasha, Rohan V. Patel, Nicholas J. Provert, Jerome Verdier, Olivier Leprince, and Julia Buitink

Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis
Paul Derbyshire, Delphine Ménard, Pornpit Green, Gerhard Saalbach, Henrik Buschmann, Clive W. Lloyd, and Edouard Pesquet

Cyclin-Dependent Kinase Regulation of Diurnal Transcription in Chlamydomonas
Frej Tulin and Frederick R. Cross

High-Resolution Profiling of a Synchronized Diurnal Transcriptome from Chlamydomonas reinhardtii Reveals Continuous Cell and Metabolic Differentiation
James Matt Zones, Ian K. Blaby, Sabeeha S. Merchant, and James G. Umen

RESEARCH ARTICLES

A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History
Nora Hofmann, Eva M. Wolf, Martin A. Lysak, and Marcus A. Koch

Divergence in Patterns of Leaf Growth Polarity Is Associated with the Expression Divergence of miR396
Mainak Das Gupta and Utpal Nath

Transcriptional and Hormonal Regulation of Gravitropism of Woody Stems in Populus
Suzanne Gerttula, Matthew Zinkgraf, Gloria K. Muday, Daniel R. Lewis, Farid M. Ibatullin, Harry Brumer, Foster Hart, Shawn D. Mansfield, Vladimir Filkov, and Andrew Groover

Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis
Qingzhe Zhai, Xin Zhang, Fangming Wu, Hailong Feng, Lei Xu, Min Zhang, Qiaomei Wang, and Chuanyou Li

VLN2 Regulates Plant Architecture by Affecting Microfilament Dynamics and Polar Auxin Transport in Rice
Shengyang Wu, Yurong Xie, Junjie Zhang, Yulong Ren, Xin Zhang, JiuLin Wang, Xiuping Guo, Fuxing Wu, PeiKe Sheng, Juan Wang, Chuanyin Wu, Haiyang Wang, Shanjin Huang, and Jianmin Wan

Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis
Katharina vom Dorp, Georg Hölzl, Christian Plohmann, Marion Eisenhut, Marion Abraham, Andreas P.M. Weber, Andrew D. Hanson, and Peter Dörmann

The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyanidin and Anthocyanin Pigmentation in Medicago truncatula
Ji Hyung Jun, Chenggang Liu, Xirong Xiao, and Richard A. Dixon

Arabidopsis CBP1 Is a Novel Regulator of Transcription Initiation in Central Cell-Mediated Pollen Tube Guidance
Hong-Ju Li, Shan-Shan Zhu, Meng-Xia Zhang, Tong Wang, Liang Liang, Yong Xue, Dong-Qiao Shi, Jie Liu, and Wei-Cai Yang

GLABRA2 Directly Suppresses Basic Helix-Loop-Helix Transcription Factor Genes with Diverse Functions in Root Hair Development
Qing Lin, Yohei Ohashi, Mariko Kato, Tomohiko Tsuge, Hongya Gu, Li-Jia Qu, and Takashi Aoyama
The REC1 DNA Translocase Is a Key Factor in Recombination Surveillance, Repair, and Segregation of the Mitochondrial DNA in Arabidopsis

Clémentine Wallet, Monique Le Ret, Marc Bergdoll, Marc Bichara, André Dietrich, and José M. Gualberto

CELLULOSE SYNTHASE INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma Membrane in Arabidopsis

Lei Lei, Abhishek Singh, Logan Bashline, Shundai Li, Yaroslava G. Yingling, and Ying Gu

Arabidopsis TRIGALACTOSYLDIACYLGlycerol5 Interacts with TGD1, TGD2, and TGD4 to Facilitate Lipid Transfer from the Endoplasmic Reticulum to Plastids

Jillian Fan, Zhiyang Zhai, Chengshi Yan, and Changcheng Xu

Fibrillin 5 Is Essential for Plastoquinone-9 Biosynthesis by Binding to Solanesyl Diphosphate Synthases in Arabidopsis

Eun-Ha Kim, Yongjik Lee, and Hyun Uk Kim

CYP76C1 (Cytochrome P450)-Mediated Linalool Metabolism and the Formation of Volatile and Soluble Linalool Oxides in Arabidopsis

Flowers: A Strategy for Defense against Floral Antagonists

Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew

Salim Bourras, Kattlin Elyse McNally, Roi Ben-David, Francis Parlange, Stefan Roffler, Coraline Rosalie Praz, Simone Oberhaensli, Fabrizio Menardo, Daniel Strnimweis, Zeev Frenkel, Luisa Katharina Schaefer, Simon Flückiger, Georges Treier, Gerhard Herren, Abraham B. Korol, Thomas Wicker, and Beat Keller

CORRECTION

OPEN Articles can be viewed online without a subscription.
This information is current as of June 30, 2017

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>eTOCs</td>
<td>Sign up for eTOCs at:</td>
</tr>
<tr>
<td></td>
<td>http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>CiteTrack Alerts</td>
<td>Sign up for CiteTrack Alerts at:</td>
</tr>
<tr>
<td></td>
<td>http://www.plantcell.org/cgi/alerts/ctmain</td>
</tr>
<tr>
<td>Subscription Information</td>
<td>Subscription Information for The Plant Cell and Plant Physiology is available at:</td>
</tr>
<tr>
<td></td>
<td>http://www.aspb.org/publications/subscriptions.cfm</td>
</tr>
</tbody>
</table>