KONJAC1 and 2 Are Key Factors for GDP-Mannose Biosynthesis in Arabidopsis

Shota Sawake,a Noriaki Tajima,a Jenny C. Mortimer,b,c,d Jeemeng Lao,d Toshiki Ishikawa,a Xiaolan Yu,b Yukiko Yamanashi,a Yoshihisa Yoshimi,a Maki Kawai-Yamada,a Paul Dupree,b Yoichi Tsumuraya,a and Toshihisa Kotakea,b,1

a Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
b Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
c Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
d Joint Bioenergy Institute, Emeryville, California 94608

ORCID IDs: 0000-0001-6624-636X (J.C.M.); 0000-0001-9270-6286 (P.D.); 0000-0001-9835-383X (Y.T.); 0000-0002-1110-5006 (T.K.)

Humans are unable to synthesize L-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a rate-limiting step in AsA synthesis: the formation of GDP-Man. In this study, we identified two nucleotide sugar pyrophosphorylase-like proteins, KONJAC1 (KJC1) and KJC2, which stimulate the activity of VTC1. The kjc1 kjc2 double mutant exhibited severe dwarfism, indicating that KJC proteins are important for growth and development. The kjc1 mutation reduced GMPP activity to 10% of wild-type levels, leading to a 60% reduction in AsA levels. On the contrary, overexpression of KJC1 significantly increased GMPP activity. The kjc1 and kjc1 kjc2 mutants also exhibited significantly reduced levels of glucomannan, which is also synthesized from GDP-Man. Recombinant KJC1 and KJC2 enhanced the GMPP activity of recombinant VTC1 in vitro, while KJCs did not show GMPP activity. Yeast two-hybrid assays suggested that the stimulation of GMPP activity occurs via interaction of KJC3 with VTC1. These results suggest that KJC3s are key factors for the generation of GDP-Man and affect AsA level and glucomannan accumulation through the stimulation of VTC1 GMPP activity.

INTRODUCTION

The ability of plants to synthesize L-ascorbic acid (AsA) is critical to human health, since we cannot synthesize it ourselves and must obtain it from our diet. Deficiency in AsA results in scurvy, since AsA is a critical cofactor in the synthesis of collagen (Murad et al., 1981). Indeed, AsA is a major antioxidant compound involved in many reactions. In mammals, it also plays a role in the protection of DNA from oxidative damage, since AsA eliminates reactive oxygen species (Fraga et al., 1991). In plants, AsA has been suggested to minimize the generation of reactive oxygen species, which alleviates the damage of photosynthetic machinery during photoinactivation (Tóth et al., 2011). In addition, AsA level modulates plant growth and development through altering phytohormone and defense signaling (Pastori et al., 2003). It is known that elevated AsA level confers tolerance to abiotic stresses such as salt and heat stress (Hernavathi et al., 2010; Vacca et al., 2004).

The main synthetic pathway for AsA in vascular plants is Man (sugars in this study are β series unless designated otherwise)/L-galactose pathway (Smirnoff-Wheeler pathway) (Wheeler et al., 1998), in which the conversion of GDP-Man from Man 1-phosphate (Man 1-P) catalyzed by GDP-Man pyrophosphorylase (GMPP) is a rate-limiting step affecting AsA quantity, as well as several downstream steps (Supplemental Figure 1) (Dowdle et al., 2007; Linster et al., 2007; Torabinia et al., 2009). VITAMIN C DEFECTIVE1 (VTC1)/CYTOKINESIS DEFECTIVE1 (CYT1); hereafter, VTC1 indicates VTC1/CYT1 protein has been identified as the major form of GMPP in Arabidopsis, and evidence for its key role in AsA synthesis comes from a number of different studies: In Arabidopsis thaliana, the vtc1-1 mutant, a leaky mutant for the VTC1 gene, exhibits a 70% decrease in AsA level (Conklin et al., 1997, 1999) and a CONSTITUTIVE PHOTOMORPHOGENESIS9 (COP9) signalosome subunit, CSNSB, downregulates AsA level through the degradation of VTC1 in the dark (Wang et al., 2013b). In tomato (Solanum lycopersicum), metabolic engineering to increase pyrophosphate (Pi) levels substantially decreased AsA quantity, as it promoted pyrophosphorylisis of GDP-Man into Man 1-P and GTP by GMPP (Osorio et al., 2013). Due to the pivotal role of this enzyme, efforts to enhance AsA levels in planta have targeted VTC1 gene expression (Croine et al., 2012). Recently, a transcription factor, ETHYLENE RESPONSE FACTOR98 (ERF98) has been identified as a positive regulator of VTC1 (Zhang et al., 2012). However, a protein factor that directly stimulates the GMPP activity of VTC1 remains to be identified.

GDP-Man also serves as substrate in the synthesis of the mannann family polysaccharides, which are widely distributed in vascular plants (Scheller and Ulvskov, 2010). These include glucomannan in konjac (Amorphophallus konjac); an Asian plant

1 Address correspondence to kotake@mail.saitama-u.ac.jp.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Toshihisa Kotake (kotake@mail.saitama-u.ac.jp).

www.plantcell.org/cgi/doi/10.1105/tpc.15.00379
containing high levels of glucomannan) and galactomannan in beans (i.e., *Ceratonia siliqua*), which are accumulated as storage polysaccharides and utilized as dietary fibers in our foods. Mannans are also found in gymnosperms such as pine (i.e., *Pinus radiata*) as a major hemicellulose. The synthesis of mannann family polysaccharides is catalyzed by the CELLULOSE SYNTHASE-LIKE As (CSLAs), which form a subclade of CAZy family GT2. In vitro, the CSLAs can transfer mannosylresidues from GDP-Man to produce a homomannan (β-1,4-Man) backbone. However, if GDP-glucose (GDP-Glc) is also provided, a glucomannan backbone is produced (a combination of β-1,4-Man and β-1,4-Glc; Liepmann et al., 2005). In Arabidopsis, as shown in the *csla2 csla3 csla9* triple mutant, loss of glucomannan in inflorescence stems has no apparent effect on growth and development (Goubet et al., 2009). However, glucomannan seems to play a specific role in certain cell types, as plants lacking an active CSLA7 are embryo lethal (Goubet et al., 2003). In addition, the MANNAN SYNTHESIS-RELATED genes, which encode putative glycosyltransferases with unknown function, have also been shown to be required for glucomannan synthesis (Wang et al., 2013a). Understanding the mechanism for mannann family polysaccharide synthesis would contribute to the improvement of its production. However, the availability of Arabidopsis mutants with defects in glucomannan synthesis is currently limited.

In addition to AsA and mannann polysaccharides, glycoproteins and glycolipids also require GDP-Man for their synthesis. In the early process of N-linked glycosylation, GDP-Man is used for the synthesis of the lipid-linked glycan at the cytoplasmic side of the endoplasmic reticulum (ER), which is then translocated via a flipase into the ER lumen, where it is further glycosylated. This is supported by the observation that the cyt1 mutation, which is allelic to *vtc1*, perturbs the N-glycosylation of glycoproteins, resulting in an embryonic lethal phenotype (Lukowitz et al., 2001). Loss of GONST1, a Golgi-localized GDP-sugar transporter, specifically reduced the mannansyl residues of glycosyl inositol phospholipidceramides (GIPCs), causing severe dwarfism without affecting AsA and glucomannan biosynthesis (Mortimer et al., 2013). This suggests that the synthesis of GIPCs requires transport of GDP-Man into the Golgi apparatus by GONST1, but that of AsA and glucomannan do not. A topological study has suggested that CSLAs utilize GDP-Man in the Golgi lumen (Davis et al., 2010), implying the presence of an alternative GDP-Man transporter for glucomannan. Although all of these compounds are independently synthesized, GDP-Man seems to be provided from the biosynthesis pathway involving VTC1.

In vascular plants, the majority of nucleotide sugars are found in the cytoplasmic side of the endoplasmic reticulum (ER), which is then translocated via a flipase into the ER lumen, where it is further glycosylated. This is supported by the observation that the cyt1 mutation, which is allelic to *vtc1*, perturbs the N-glycosylation of glycoproteins, resulting in an embryonic lethal phenotype (Lukowitz et al., 2001). Loss of GONST1, a Golgi-localized GDP-sugar transporter, specifically reduced the mannansyl residues of glycosyl inositol phospholipidceramides (GIPCs), causing severe dwarfism without affecting AsA and glucomannan biosynthesis (Mortimer et al., 2013). This suggests that the synthesis of GIPCs requires transport of GDP-Man into the Golgi apparatus by GONST1, but that of AsA and glucomannan do not. A topological study has suggested that CSLAs utilize GDP-Man in the Golgi lumen (Davis et al., 2010), implying the presence of an alternative GDP-Man transporter for glucomannan. Although all of these compounds are independently synthesized, GDP-Man seems to be provided from the biosynthesis pathway involving VTC1.

While in mammals, GDP-Glc is also synthesized from Glc 1-P by a GMPP complex (Szumilo et al., 1993; Ning and Elbein, 2000), a mechanism for the generation of GDP-Glc remains to be clarified in vascular plants.

Nucleotide sugar pyrophosphorylases are a family of enzymes, many of which catalyze the reversible conversion of nucleotide triphosphate and monosaccharide 1-P to nucleotide diphosphate sugar and PPi. There are at least nine clades of nucleotide sugar pyrophosphorylases (Figure 1A), which have different activities and physiological functions (Kotake et al., 2010). UDP-Glc pyrophosphorylases generate UDP-Glc, the starting substrate of UDP-sugar metabolism, which is used for the synthesis of cellulose and β-1,3-glucan and for the β-1,4-glucan backbone of xyloglucan (Hayashi et al., 1987; Gordon and Maclachlan, 1989; Cocuron et al., 2007; Park et al., 2010). A plant-specific enzyme, UDP-sugar pyrophosphorylase (USP), converts various monosaccharide 1-Ps to their respective UDP-sugars in the salvage pathway and is required for pollen development (Kotake et al., 2004, 2007; Schnurr et al., 2006). ADP-Glc pyrophosphorylases provide ADP-Glc for starch synthesis and can be divided into two clades, small (S) subunit and large (L) subunit clades. As reported for ADP-Glc pyrophosphorylase S1 of Arabidopsis, the S subunit plays a central role in the synthesis of ADP-Glc, whereas the L subunit has weak enzymatic activity and instead functions as a regulatory protein to enhance the activity of the S subunits (Crevillen et al., 2003; Petreikov et al., 2010).

In this study, proteins structurally resembling nucleotide sugar pyrophosphorylases were identified as key factors for the generation of GDP-Man in Arabidopsis. The mutants lacking these proteins showed a drastic reduction in GMPP activity as well as significantly lowered AsA level and glucomannan accumulation in cell walls. Based on the analysis of decreased GMPP activity in the mutants, properties of recombinant proteins, and interaction with VTC1, we suggest that these proteins participate in the synthesis of GDP-Man through stimulation of the GMPP activity of VTC1.

RESULTS

Drastic Decrease in GMPP Activity in konjac Mutants

Based on a phylogenetic analysis of nucleotide sugar pyrophosphorylases from Arabidopsis and rice (*Oryza sativa*), two proteins, designated KONJAC1 (KJC1) and KJC2, were found to belong to a clade close to the GMPP clade (Figure 1A; Supplemental File 1). Although KJCs show weak sequence similarity to VTC1 (identities of KJC1 and KJC2 to VTC1, 31 and 32%, respectively; Supplemental Figure 2) that plays a central role in the synthesis of GDP-Man, they have an insertion of two amino acids in the pyrophosphorylase consensus motif that is highly conserved in GMPPs (Figure 1B). These observations suggest that KJCs are involved in GDP-sugar metabolism but may have a function different from VTC1.

To explore the functions of KJCs, the homozygous T-DNA insertion lines *kjc1-1* (SALK_044963) and *kjc2-1* (SALK_023876) and the double mutant *kjc1-1 kjc2-1* were characterized (Supplemental Figure 3A). Their genotypes were confirmed by RT-PCR (Supplemental Figure 3B and Supplemental Table 1).
First, soluble GMPP activity of the mutants was measured using Man 1-P and GTP as the substrates. Surprisingly, the activities in \(kjc1-1 \) and \(kjc1-1 \ kjc2-1 \) double mutants were only 10 and 8% of the wild type, respectively, based on the protein content (Figure 2). Similar results were obtained for GMPP activity based on the fresh weight (Supplemental Figure 4). GMPP activity in \(kjc1-1 \) was properly recovered by the complementation with a genomic \(KJC1 \) fragment (Supplemental Figure 5). In addition, a second \(kjc1 \) mutant, \(kjc1-2 \) (SALK_110173), in which T-DNA is inserted at the end of coding region was isolated, showed a 19% reduction in GMPP activity. These results suggest that \(KJC1 \) participates in the synthesis of GDP-Man as a key factor affecting GMPP activity. On the other hand, there was no significant reduction in the activity in \(kjc1-3 \), a T-DNA insertion line (GK_175D06) that has a T-DNA insertion in 5' upstream region (Supplemental Figure 3A). The activity in the \(kjc2-1 \) mutant was -70% of the wild type. The large reduction in GMPP activity in the \(kjc1-1 \) and \(kjc1-1 \ kjc2-1 \) mutants was unexpected, since the kjc mutants contain wild-type VTC1 protein. This suggests that \(KJC \) proteins can modulate the GMPP activity of VTC1, as opposed to functioning as additional GMPPs. The results also indicate that \(KJC1 \) and \(KJC2 \) can be considered as the major and minor isoforms, respectively, consistent with their expression levels obtained from publicly available microarray data (Hruz et al., 2008; Supplemental Figure 6A).

AsA Levels in kjc Mutants

GDP-Man synthesis is one of the rate-limiting steps in AsA synthesis, as shown in plants with reduced amounts of functional VTC1 (Conklin et al., 1997). Therefore, the influence of kjc mutations on AsA level in seedlings was also investigated. Consistent with reduced GMPP activity, AsA levels (here, total AsA levels were measured) in \(kjc1-1 \) and \(kjc1-1 \ kjc2-1 \) were -40% of that in the wild-type plant, while the reduction was smaller in \(kjc2-1 \) (Figure 3). AsA level in \(kjc1 \) was comparable with that in \(vtc1 \).

Figure 1. Relationships of KJCs with Other Nucleotide Sugar Pyrophosphorylases.

(A) The phylogenetic relationships of KJC1 and KJC2 with other nucleotide sugar pyrophosphorylases in Arabidopsis and rice. The analysis was performed using MEGA software (version 6.0; Tamura et al., 2013). The bar indicates substitutions per site. PP, pyrophosphorylase. Numbers in nodes represent bootstrap values.

(B) The pyrophosphorylase consensus motifs of VTC1 and KJCs. The insertion of two amino acids observed for the KJC subfamily is shown in red. Mm-GMPPA and Mm-GMPPB, mouse (Mus musculus) GDP-Man pyrophosphorylase subunits α and β, respectively.
The expression level of GMPP activity was also examined. In several independently generated lines overexpressing either KJC1 or KJC2 under the control of the CaMV 3SS promoter (Supplemental Figure 7A), significant increases in GMPP activity were observed (Figure 2), while the expression level of VTC1 was not increased (Supplemental Figures 7A and 7B). Moreover, overexpression of KJC1 also caused a maximum of 37% increase in AsA level (Figure 3). These results strongly support the hypothesis that KJCs participate in the generation of GDP-Man. Although overexpression of VTC1 was also examined, the effects on GMPP activity and AsA level were not obvious compared with that of KJC1 (Figures 2 and 3). Therefore, the turnover of VTC1 might be regulated by other factors (Wang et al., 2013b).

KJC1 Affects GMPP Activity

The effect of overexpression of KJC1 and KJC2 genes on GMPP activity was also examined. In several independently generated lines overexpressing either KJC1 or KJC2 under the control of the CaMV 3SS promoter (Supplemental Figure 7A), significant increases in GMPP activity were observed (Figure 2), while the expression level of VTC1 was not increased (Supplemental Figures 7A and 7B). Moreover, overexpression of KJC1 also caused a maximum of 37% increase in AsA level (Figure 3). These results strongly support the hypothesis that KJCs participate in the generation of GDP-Man. Although overexpression of VTC1 was also examined, the effects on GMPP activity and AsA level were not obvious compared with that of KJC1 (Figures 2 and 3). Therefore, the turnover of VTC1 might be regulated by other factors (Wang et al., 2013b).

Reduced GDP-Man Level in kjc1-1 Mutant

It is highly probable that GMPP activity determines the level of GDP-Man. The influence of kjc mutations on the metabolism and accumulation of GDP-Man was analyzed. Nucleotide sugars including GDP-Man were extracted from liquid-grown calli of kjc and vtc mutants, separated, and quantified by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Consistent with decreased GMPP activity, out of the 10 NDP-sugars measured, only GDP-Man level was significantly reduced in the kjc1-1 mutant (Figure 4). While the level of GDP-Man in vtc2-1, which has a defect in the conversion of GDP-L-Gal to L-Gal-1-P, was similar to that in the wild type, vtc1-1 showed a more drastic reduction than kjc1-1. The level of GDP-Glc was quite low in all plants and was not significantly different between the mutants and the wild type. The decreased level of GDP-Man in kjc1-1 strongly supports the hypothesis that KJC1 affects the activity of VTC1, a major isoform of GMPP in Arabidopsis.

The Role of KJC Proteins in Growth and Development

The growth of kjc mutants was examined. While kjc1-1 and kjc2-1 single mutants grew normally, kjc1-1 kjc2-1 exhibited severe dwarfism (Figures 5A and 5B). The double mutant had small leaves and short roots and did not flower. These phenotypes indicate that KJC proteins are important for normal growth and development. The expression data available from the Arabidopsis eFP browser indicate that the expression of KJC1 is under diel regulation; thus, its level is high in the dark (Supplemental Figure 6B; Winter et al., 2007). KJC1 protein may participate in the regulation of AsA level.

In the vtc1 mutant (which is allelic to vtc1), an embryonic lethal phenotype caused by N-linked glycosylation deficiency was observed (Lukowitz et al., 2001). Although KJCs participate in the synthesis of GDP-Man together with VTC1, a significant increase in impaired seeds was not observed for kjc1-1 and kjc2-1 single mutants (Supplemental Figure 8). Thus, the physiological importance of KJC proteins is not necessarily identical to that of VTC1.

Amount and Structure of Cell Wall Glucomannan

GDP-Man is utilized as a direct substrate in the synthesis of cell wall glucomannan. It is highly probable that, together with CSLA activity, the available pool of GDP-Man determines the accumulation and structure of glucomannan in cell walls. To examine changes in cell wall glucomannan in the kjc mutants, the sugar composition of cell walls in the seedlings was determined. The proportion of Man constituting cell wall polysaccharides in kjc1-1

(25% of the wild-type plant) (Conklin et al., 1999), although the results cannot be directly compared, as growth conditions were not necessarily the same. Thus, KJC proteins can be defined as a factor affecting the synthesis of AsA.
and \textit{kjc1-1 kjc2-1} was \textasciitilde{} 50\% of the wild type (Figure 6A). As almost all Man detected in cell wall preparations in Arabidopsis is glucomannan derived (Goubet et al., 2009), this result indicates that these mutants have reduced levels of glucomannan in their cell walls. To confirm the changes in cell wall glucomannan, polysaccharide analysis using carbohydrate gel electrophoresis (PACE) was also performed (Goubet et al., 2002, 2009). Here, cell wall (AIR, for alcohol-insoluble residue) was prepared from seedlings and hydrolyzed by a combination of \(\beta\)-1,4-mannanases. The resulting oligosaccharides were then labeled with a fluorescent tag and separated by gel electrophoresis. As shown in Figure 6B, the quantity of mannanase-dependent oligosaccharide bands in \textit{kjc1-1} and \textit{kjc1-1 kjc2-1} was lower than those in the wild-type plant (based on the band intensity, estimated glucomannan contents in \textit{kjc1-1} and \textit{kjc1-1 kjc2-1} were 64\% \pm 12\% and 79\% \pm 9\% of the wild type, respectively). By comparison, when \textit{KJC1} was overexpressed, more glucomannan was detected (KJC OX # 9 and 11, 158\% \pm 40\% and 123\% \pm 21\% of the wild type, respectively).

N-Glycan Structure in \textit{kjc} Mutants

In the \textit{cyt1} mutant, the deficiency in GDP-Man affects the \(N\)-glycosylation of glycoproteins (Lukowitz et al., 2001). In vascular plants, the glycan core is substituted with a \(\beta\)-1,2-xylosyl residue attached to a mannosyl residue and with an \(\alpha\)-1,3-L-fucosyl residue attached to the reducing terminal \(N\)-acetylglucosaminosyl residue (Supplemental Figure 9A). Protein gel blot analyses of the seedlings of \textit{kjc} mutants were performed using antibodies against these glycosyl residues (Faye et al., 1993). Although a change in the band pattern (increase in an unidentified protein with relative molecular mass of 24 kD) was observed in \textit{kjc1-1 kjc2-1} mutant, proper \(\beta\)-1,2-xylosyl and \(\alpha\)-1,3-L-fucosyl residues of \(N\)-glycans were observed for \textit{kjc1-1}, \textit{kjc2-1}, and \textit{kjc1-1 kjc2-1} mutants (Supplemental Figures 9B and 9C). These results suggest that the core structure of \(N\)-glycans is not altered in \textit{kjc} mutants.

Mannosylation of GIPCs in \textit{kjc} Mutants

In vascular plants, GIPCs generally have inositol, glucuronic acid, \(N\)-acytylglucosamine, and Man as their headgroup sugars, depending on species and tissue type. In the \textit{gonst1} GDP-sugar transporter mutant, reduced mannoolylation of GIPC occurs, which causes dwarfism and a constitutive hypersensitive response (Mortimer et al., 2013). To examine the influence of \textit{kjc} mutations on GIPC mannoolylation, the sugar composition of GIPCs in calli of \textit{kjc} mutants was determined by LC-MS/MS analysis. Although the proportion of GIPCs having two hexoses was slightly reduced in \textit{kjc1-1} and \textit{kjc2-1} mutants (Supplemental Figure 10), the change was minor in comparison with the \textit{gonst1} mutant, in which more than 70\% of GIPCs lacked headgroup sugar (Mortimer et al., 2013).

Properties of Recombinant KJC1 and 2

To gain an insight into the molecular functions of KJC proteins, recombinant KJC1 (rKJC1) and KJC2 (rKJC2) were prepared by heterologous expression in \textit{Escherichia coli} together with recombinant VTC1 (rVTC1). The recombinant proteins were expressed as proteins fused to His\(_6\) tags and purified by chelating chromatography (Supplemental Figure 11A). While rVTC1 showed proper GMPP activity, forming GDP-Man from Man 1-P and GTP,
rKJCs showed neither GMPP activity (Figure 7A), GDP-Glc pyrophosphorylase (GGPP) activity, nor GDP-L-Fuc pyrophosphorylase activity. However, higher GMPP activity than rVTC1 alone was observed when rVTC1 was mixed with rKJC1 or rKJC2 at molar ratio of 1:1 (Figure 7B). This raised two possibilities: rKJCs stimulated the activity of rVTC1 or rKJCs gained GMPP activity by interacting with rVTC1. To examine these possibilities, rKJCs and rVTC1 with a point mutation in the highly conserved nucleotide sugar pyrophosphorylase consensus motif, rVTC1 K23A, rKJC1 K33A, and rKJC2 K30A, were prepared (Supplemental Figure 11B) (Kotake et al., 2008). While rVTC1 K23A did not show any activity even in the presence of rKJCs, high activity was observed for mixtures of normal rVTC1 and rKJC1 K33A, and normal rVTC1 and rKJC2 K30A (Figure 7B). These results show that KJC proteins stimulate the activity of rVTC1.

In pig liver, GMPP exists as a complex of subunits α and β, which, based on the similarity of their amino acid sequences, correspond to KJCs and VTC1, respectively (Figure 1B; Supplemental Figure 12 and Supplemental File 2). Importantly, besides GMPP activity, the animal GMPP complex has high GGPP activity, while subunit β alone had very weak GGPP activity (Szumilo et al., 1993; Ning and Elbein, 2000). In this context, substrate specificity of the mixture of rVTC1 and rKJCs was compared with that of rVTC1 alone using various nucleotide sugars and PPI as the substrates. However, obvious changes in the substrate specificity were not observed, when the activity toward GDP-Man (GDP-Man pyrophospholysis activity) with or without rKJCs is taken as 100% (Supplemental Table 2). Indeed, GGPP activity in seedlings (<5% of the detected GMPP activity) and the level of GDP-Glc in the callus (4.5% of GDP-Man) was low even in the wild type, indicating that the complex of KJC1 and VTC1 does not have high GGPP activity.

Interaction of KJC Proteins with VTC1

The drastic reduction of GMPP activity in kjc1-1 and kjc1-1 kjc2-1 suggested that KJC1 forms a complex with VTC1 and affects its GMPP activity. The interaction of KJC1 and KJC2 with VTC1 was examined by yeast two-hybrid (Y2H) assay. As shown in Figures 8A and 8B, KJC1 and KJC2 appeared to interact with VTC1 in yeast cells, while it did not interact with USP, which catalyzes the formation of UDP-sugars (Supplemental Figure 13). In addition, the Y2H assay also suggested the formation of homo- and heterodimers of KJC proteins, whereas VTC1 does not likely form a homodimer.

The interaction between KJC1 and VTC1 was also confirmed by a copurification assay of the recombinant proteins. We examined whether rFLAG-KJC was retained by the Ni-chelating column via interaction with rHis6-VTC1. As shown in Figure 8C, a proportion of the rFLAG-KJC1 was retained and coeluted with rHis6-VTC1 with imidazole solution, while rFLAG-KJC1 alone was hardly retained on the column (Figure 8D). These results indicate that KJC proteins form a complex with VTC1, suggesting that they may thereby influence the GMPP activity of VTC1.

DISCUSSION

KJCs Stimulate GMPP Activity of VTC1

Generation of GDP-Man relies only on GMPP activity, whereas UDP-Glc, the starting substrate in the de novo pathway of UDP-sugars, can be formed by different enzymes: UDP-Glc pyrophosphorylase, USP, or sucrose synthase (Kotake et al., 2004). Out of three GMPP isoforms in Arabidopsis, VTC1 is the main isoform based on the expression level and its mutant phenotypes (Conklin et al., 1999;
Lukowitz et al., 2001). Therefore, the level of GDP-Man is expected to be determined primarily by the activity of VTC1. In this study, on the basis of the results on kjc mutants, overexpression of KJCs, and recombinant KJCs, KJC1 and KJC2 were identified as factors stimulating GMPP activity of VTC1. The drastic decrease in GMPP activity in the kjc1-1 mutant indicates that KJC1 is a key factor for the synthesis of GDP-Man in conjunction with VTC1 in Arabidopsis, while KJC2 likely functions as the minor isoform, in specific tissues, or with other GMPP isoforms.

Molecular Functions of KJCs

Based on the properties of recombinant proteins and interaction with VTC1, KJCs were revealed to have neither GMPP nor GGPP activity, but KJCs stimulates the GMPP activity of VTC1, probably through the formation of a complex. Proteins corresponding to KJCs are widely distributed in eukaryotes including mammals (Supplemental Figure 12), but this does not imply conserved functionality. A native GMPP was purified from pig liver comprising a complex of subunits α and β, which correspond to KJC1 and VTC1, respectively (Szumilo et al., 1993; Ning and Elbein, 2000). Importantly, the native complex had GGPP activity higher than GMPP activity, but recombinant subunit β expressed in E. coli showed high GMPP activity and very low GGPP activity. This finding suggests that the subunit α has GGPP activity or confers the activity to the complex (Ning and Elbein, 2000). In this work, consistent with its activities in Arabidopsis seedlings, rVTC1 showed relatively low GGPP activity compared with its GMPP activity, even in the presence of rKJC1. We cannot exclude the possibility that the properties of rKJCs expressed in E. coli do not properly reflect those of native KJCs, but our results suggest that KJCs themselves do not or rarely synthesize GDP-Man but participate in the generation of GDP-Man through the stimulation and/or stabilization of VTC1.

Recently, another function of the subunit α has also been described. On the basis of strongly increased level of GDP-Man in the lymphoblasts of individuals with a homozygous mutation in the subunit α gene, the subunit α is presumed to mediate a feedback inhibition of subunit β as a regulatory subunit (Koehler et al., 2013). The molecular function of KJCs is similar to that of the mammalian subunit α in the sense that they work as regulatory subunits, but the effect on GMPP activity of the catalytic GMPP is rather opposite to that of mammalian subunit α. Thus, it is suggested that the mammalian subunit α and KJCs share a common ancestor but have acquired different functions (Supplemental Figure 12).

Based on the expression data from Arabidopsis eFP browser, the expression of KJC1 is high in the dark (Supplemental Figure 6B; Winter et al., 2007; Michael et al., 2008). As the generation of GDP-Man is regulated through degradation of VTC1 by a COP9 signalosome in the dark (Wang et al., 2013b), it is likely that KJC1 also participates in this regulation. KJC1 likely has a function opposite that of the COP9 signalosome in the generation of GDP-Man.

The dramatic decrease in GMPP activity in kjc1-1 also suggests another function for KJC proteins. In vivo, the absence of KJC1 resulted in a 90% reduction in GMPP activity. In vitro, rKJC1 was only able to boost the GMPP activity of rVTC1 2-fold. This could be due to the nature of the in vitro assay versus in vivo conditions. However, it could also be due to a role for KJC in stabilizing VTC1 in Arabidopsis.

Generation of GDP-Glc by VTC1 and KJC

GDP-Glc has been shown to serve as the substrate for recombinant CSLA expressed in insect cells in vitro (Liepman et al., 2005). The relatively low GGPP activity of rVTC1, even in the presence of

Figure 7. Effect of rKJCs on GMPP Activity of rVTC1.

(A) The rVTC1, rKJC2, rKJC2, and the point-mutated proteins (rVTC1 K23A, rKJC1 K33A, and rKJC2 K30A) were expressed in E. coli, and their GMPP activity was examined.

(B) The effect of rKJCs on GMPP activity of rVTC1. The rKJC protein was added to the reaction mixture at identical concentration to that of rVTC1. The activities per milligram of rVTC1 protein were compared. The rKJCs had no GMPP activity, but they enhanced the activity of rVTC1. The rKJCs with a point mutation also worked on rVTC1. The experiment was performed with three technical replicates. The positions of point-mutated amino acid residues are shown in Supplemental Figure 11B.
rKJC1, raises the question of how GDP-Glc is generated in intact plants. Recent biochemical studies of the GDP-\(L\)-Gal phosphorolases, VTC2 and VTC5, have indicated that GDP-Glc can be formed from Glc 1-P and GDP-L-Gal, but this GDP-Glc synthesis pathway is dependent on the synthesis of GDP-L-Gal via GDP-Man (Linster et al., 2007; Wolucka and Van Montagu, 2007). On the other hand, it is also possible that VTC1 generates GDP-Glc from Glc 1-P and GTP in the presence of relatively high concentrations of Glc 1-P in vivo. In this case, the KJCs also likely participate in the synthesis of GDP-Glc with VTC1.

Different Effects of Mutation on AsA, Glucomannan, and N-Glycan

The *kjc1-1* mutation appeared to significantly reduce AsA level and glucomannan content, but it did not drastically affect \(\alpha\)-l-fucosyl and \(\beta\)-xylosyl residues of N-glycans, at least as detected by the immunoblotting method used in this study. Mannosylation of glycoproteins occurs via the dolichol (Dol) import pathway in the ER. In this pathway, GDP-Man is the substrate at the cytosolic face of the ER for mannosylation of a GlcNAC\(_2\)-PP-Dol intermediate.
The sugars are then translocated across the ER membrane via a flippase, where it is further glycosylated prior to transfer onto the protein. Therefore, it is possible that the different influences on these compounds may result from distinct subcellular localization or different affinities of the enzymes catalyzing these reactions, leading to different priorities for the utilization of GDP-Man as the substrate to a certain reaction. Different impacts on AsA and glucomannan quantities were also observed as a result of overexpression of KJC1. While the overexpression slightly increased AsA level, it caused significant increase in glucomannan content in cell walls. It is likely that control mechanisms exist to limit excess AsA levels in order to maintain the redox balance in the cells.

Dwarfism of the kjc1-1 kjc2-1 Mutant

Severe dwarfism was observed for the kjc1-1 kjc2-1 mutant, while its AsA concentration and glucomannan cell wall content were comparable to those of kjc1-1. The phenotypes of kjc1-1 kjc2-1 are not necessarily consistent with those of other mutants with defects in AsA and glucomannan synthesis, including cyt1 and csla mutants. First, kjc1-1 kjc2-1 was viable, which is distinct from the embryonic lethal phenotype of cyt1 (N-glycosylation) and csla7 (glucomannan) mutants (Lukowitz et al., 2001; Goubet et al., 2003). Second, there was no evidence of any constitutive cell death, as seen when mannosylation of GIPCs is defective (Mortimer et al., 2013). Third, there was no detectable defect in N-glycosylation, which resulted in perturbed cellulose synthesis in cyt1 (Lukowitz et al., 2001). In this study, a clear explanation for the dwarfism phenotype was not obtained, but it is likely that an unknown metabolite also requires relatively high concentrations of GDP-Man. It is also possible that a specific cell type uses KJCs to boost GDP-Man metabolism.

Future Interests

KJCs appear to be key regulatory factors in GDP-Man generation by VTC1. The activity of VTC1 is also regulated by other factors, such as the COP9 signalosome CSN5B and transcription factor ERF98. A concerted mechanism likely exists for the regulation of VTC1 activity by environmental stress/signals, such as light, in vascular plants. It would be important to clarify how KJCs participate in this concerted mechanism.

METHODS

Plant Material

Arabidopsis thaliana ecotype Col was used in this study. The T-DNA insertion lines SALK_044963, SALK_110173, GK_175D06, and SALK_023876 (genetic background, Col) provided by the Nottingham Arabidopsis Stock Center were used as kjc1-1, kjc1-2, kjc1-3, and kjc2-1, respectively. The double mutant, kjc1-1 kjc2-1, was generated by a cross between kjc1-1 and kjc2-1. The vtc1-1 and vtc2-1 mutants were provided by N. Smirnoff of Exeter University. For the measurement of AsA level, GMPP activity, and glucomannan amount, seedlings were germinated and grown on Murashige and Skoog (MS) medium in 0.8% (w/v) agar under continuous light (cold cathode fluorescent lamp; Biomedical Science) at 23°C for 2 weeks. The genotypes of the mutants were determined using specific primers (Supplemental Figure 3A and Supplemental Table 1).

For the construction for overexpression of KJC1, KJC2, and VTC1, each cDNA was amplified with a set of specific primers shown in Supplemental Table 1 and cloned between the BamHI site and SacI site of the binary vector pBluescriptII (Clontech) to be expressed under the control of the CaMV 35S promoter. The plasmid construct was introduced into Arabidopsis (ecotype Col) by an Agrobacterium-mediated (Rhizobium radiobacter, EHA105 strain) method (Clough and Bent, 1998).

Complementation of the kjc1-1 Mutant

A genomic fragment of the KJC1 gene (4 kb) including 0.8 kb of upstream sequence was amplified with primers, gKJC1-EcoRI-F and gKJC1-HindIII-R (Supplemental Table 1). The DNA fragment was digested with EcoRI and HindIII and sub cloned into the binary vector pBGK1 (Inplanta Innovation) to yield the construct gKJC1/pBGK1. The construct was introduced into kjc1-1 mutant by an Agrobacterium-mediated (R. radiobacter, EHA105 strain) method.

Measurement of GMPP Activity in Plants

Arabidopsis seedlings were homogenized with a mortar and pestle in homogenization buffer A containing 50 mM Tris–HCl buffer, pH 8.0, 20% (w/v) glycerol, and 1 mM PMSF. The homogenate was centrifuged at 8000g for 5 min to remove cell debris (Kotake et al., 2004) and then used as a crude enzyme fraction. The activity of GMPP was determined by monitoring the formation of GDP-Man. The reaction mixture contained 50 mM 3-morpholinopropanesulfonic acid–KOH buffer, pH 7.0, 2 mM MgCl2, 10 mM GTP, and 1 mM Man-1-P. The reaction products were detected and quantified with an HPLC system using a Shimadzu LC-10AD equipped with a CarboPac PA1 column (4 × 250 mm; Dionex) according to the method described by Pauly et al. (2000). GDP-Man, GDP-Glc, GTP, Glc-1-P, and Man-1-P were purchased from Sigma-Aldrich.

RT-PCR

Total RNA was extracted from 2-week-old seedlings of kjc mutants and KJC-overexpressing plants with an RNasy Plant Mini kit (Qiagen) according to the manufacturer’s instructions. Single-stranded cDNA was synthesized using the reverse transcriptase ReverTra Ace-α (Toyobo) and an oligo(dT)12-18 primer. For the amplification of full-length coding sequences (CDSs) for KJC1, KJC2, and VTC1, primer sets KJC1-full-F and KJC1-full-R for KJC1, KJC2-full-F and KJC2-full-R for KJC2, VTC1-full-F and VTC1-full-R for VTC1 (Supplemental Table 1) were designed based on the genomic database of Arabidopsis (TAIR: www.arabidopsis.org). The PCR was performed with a Mighty Amp polymerase kit (TakaRa Bio). For the quantitative RT-PCR, the primer sets ACT1-Q-RT-PCR-F and ACT1-Q-RT-PCR-R for ACT1in2, KJC1-Q-RT-PCR-F and KJC1-Q-RT-PCR-R for KJC1, KJC2-Q-RT-PCR-F and KJC2-Q-RT-PCR-R for KJC2, and VTC1-Q-RT-PCR-F and VTC1-Q-RT-PCR-R for VTC1 (Supplemental Table 1), were designed using the Primer 3.0 program (Untergasser et al., 2012). The PCR was performed with a SYBR Premix ExTaq kit (TakaRa Bio). The experiment was performed on three biological replicates, each with two technical replicates.

Preparation and Characterization of Recombinant Enzymes

The CDSs of KJC1, KJC2, and VTC1 amplified with sets of specific primers (Supplemental Table 1) were subcloned between the NdeI site and BamHI site of pET15b expression vector (Novagen), which was designed to express the recombinant enzyme fused to His6 tags at the N terminus. Point mutation was introduced into KJC cDNAs by PCR using specific sets of primers (Supplemental Table 1). Point mutation was also introduced into
VTC1 cDNA with PrimeStar Mutagenesis Basal kit (Takara Bio) using a set of primers (Supplemental Table 1). The nucleotide sequences were confirmed with an ABI PRISM 310 genetic analyzer (Applied Biosystems).

The plasmid was transfected into the BL21 (DE3) strain of *Escherichia coli* (Stratagene). The cells were grown at 10°C, and the recombinant protein was induced by treatment with 1.0 mM isopropyl β-D-thiogalactoside for 24 h. The cells were harvested and lysed in buffer A containing 0.2% lysozyme from chicken egg (Wako). The lysate was applied to a 1.5 × 6.0-cm chelating Sepharose FF column (GE Healthcare). The bound recombinant protein was eluted with 50 mM Tris-HCl buffer, pH 7.0, and 20% (v/v) glycerol containing 250 mM imidazole. The concentration of rKJC1 and rVTC1 was determined by the Bradford method with BSA as the standard (Bradford, 1976). The concentration of rKJC2 was determined based on the color intensity after staining with Coomassie Brilliant Blue R 250 on SDS-PAGE compared with the BSA standard (Laemmli, 1970), as the fraction included other proteins.

Nucleotide sugar synthase activity of the recombinant protein was assayed using 1 mM nucleotide triphosphate and 1 mM monosaccharide 1-P as the substrates. In the assay for NDP-sugar pyrophosphorylase activity, 1 mM NDP-sugar and 1 mM PPi were used as the substrates.

To determine the AIR, the AIR level in Arabidopsis seedlings grown on MS-agar medium for 10 d and on agar for 4 d was determined by the method of Bradley et al. (1973) using a vitamin C assay kit (Cosmo Bio).

Glucosamannan Analysis by PAGE

AIR was prepared as described (Fry, 2001; Harhoff et al., 2006). Briefly, Arabidopsis seedlings grown for 2 weeks (∼0.2 g) were treated with 96% (v/v) ethanol at 70°C for 30 min and homogenized using a mortar and pestle. After centrifugation, the precipitate was washed twice with 100% (v/v) ethanol, twice with methanol/chloroform (2:3), and then with 100% (v/v) ethanol, 65% (v/v) ethanol, 80% (v/v) ethanol, and 100% (v/v) ethanol. The sample was lyophilized and used as AIR.

PAGE was performed as described (Goubet et al., 2002, 2009). The AIR was treated with aequorin ammonia (200 µL, 30 min) and dried in vacuo. These samples were hydrolyzed into the oligosaccharides with excess β-mannanases Man5A and Man26A from *Pseudomonas fluorescens* (~5 µg each) at room temperature (23°C) overnight in 500 µL of 100 mM ammonium acetate buffer (pH 6.0). Samples and standards [Man₅, 1.6-M 6-trisulphonic acid, resuspended in urea [6 M for (Man₅)₆; 2 M for all other materials], and separated by electrophoresis as described (Goubet et al., 2003) with minor modifications to the derivatization process. Gels were visualized using a G-Box (Syngene) with a transilluminator with long-wave tubes emitting at 365 nm and a short-pass (500 to 600 nm) detection filter.

Sugar Composition Analysis of Cell Walls

In this study, sulfuric acid was used for complete hydrolysis of glucosamannan. Arabidopsis seedlings were homogenized with a mortar and pestle in 20 mM sodium phosphate buffer (pH 7.0) at 4°C. After centrifugation at 10,000g for 5 min and washing twice with water, the precipitate was treated twice with a total 1 mL of 17.5% (w/v) sodium hydroxide and 0.04% (w/v) sodium borohydride for 5 min each and centrifuged to collect soluble cell wall polysaccharides. The soluble polysaccharides were neutralized with 0.5 mL of glacial acetic acid, dialyzed against water at 4°C for 2 d, and lyophilized. The insoluble polysaccharides obtained as the precipitate were washed twice with water, twice with ethanol, twice with ethanol/diethyl ether (1:1), and then lyophilized. The both polysaccharide fractions were hydrolyzed with 72% (v/v) sulfuric acid at 4°C for 1 h, followed by heating in diluted (8%, v/v) acid solution at 100°C for 4 h, then neutralized with barium carbonate and desalted with Dowex 50W (H⁺) resins. Quantification of monosaccharides of cell wall polysaccharides was performed by high-performance anion-exchange chromatography with pulsed amperometric detection using a Dionex DX-500 liquid chromatograph fitted with a CarboPac PA-1 column (Dionex) and a pulsed amperometric detector (Dionex) as described previously (Ishikawa et al., 2000). The sugar composition of total cell walls was calculated based on the sum of soluble (alkali-extracted fraction) and insoluble (the residual fraction) polysaccharides.

NDP-Sugar Analysis by LC-MS/MS

Callus grown in liquid culture was generated and maintained as described previously (Prime et al., 2000). NDP-sugars were extracted according to a previously described method (Lunn et al., 2006) with slight modifications. Lyophilized callus (10 to 15 mg) was ground to a fine powder in liquid nitrogen using a ball mill. Then, 75 µL of chloroform, 175 µL of methanol, and 1 mmol of TDP-Glc (Sigma-Aldrich) as an internal standard was added to the frozen powder, and the samples were thoroughly vortexed. Following incubation at 4°C for 2 h, 400 µL of water was added to each sample, which was mixed by vortexing and centrifuged at 14,000g at 4°C for 5 min. The upper aqueous phase was collected and the lower chloroform phase was reextracted twice with 400 µL of water following the same procedures described above. The extracts were combined, dried with a centrifugal vacuum concentrator, and resuspended in 1 mL of water. Solid-phase extraction with Sepeclean ENV-Carb SPE tubes (Sigma-Aldrich) was performed as described by Behmuller et al. (2014). Samples were dried.
using a centrifugal vacuum concentrator, resuspended in 500 μL of water, and analyzed immediately. Nucleotide sugars were separated with a porous graphitic carbon LC column (5-μm particle size, 1 × 150 mm; ThermoFisher Scientific) connected to a Uniguard Holder (ThermoFisher Scientific) containing the corresponding guard cartridge (5-μm particle size, 1 × 10 mm; ThermoFisher Scientific) using an Agilent 1100 Series HPLC. Nucleotide sugars were detected using a 4000 QTRAP (AB Sciex) with a Turbo V Ion Source (AB Sciex) exactly as described by Rautengarten et al. (2014). Mass spectrometry parameters for TDP-Glc (Q1 mass, 563 D; Q3 mass, 321 D; collision energy, 30 eV) were determined using direct infusion of 1 μM of TDP-Glc in 50% (v/v) acetonitrile into the electrospray ion source using a syringe pump at a flow rate of 20 μL/min. Nucleotide sugar abundance was determined by signal peak area integration using MultiQuant 2.1 (AB Sciex).

GIPC Analysis
Total sphingolipids including GIPCs were prepared from calli of the wild-type plant and kjc-1 and kjc2-1 mutants and analyzed by LC-MS/MS as described (Nagano et al., 2014). Peaks of GIPCs with different hexose numbers (Hex, Hexa, and Hexa2) were assigned based on multiple reaction monitoring transitions (Mortimer et al., 2013).

Phylogenetic Analysis
The amino acid sequences of nucleotide sugar pyrophosphorylases in Arabidopsis were obtained from TAIR, and those in other organisms from NCBI BLAST (blast.ncbi.nlm.nih.gov/Blast.cgi) using BLASTP searches. The alignments of amino acid sequences were performed using the MUSCLE program in MEGA software (version 6; Tamura et al., 2013) with default parameters other than Gap Open (-2.5). The phylogenetic trees were generated using the neighbor-joining method with 1000 bootstrap replications. To optimize the alignment, GDP-L-Fuc pyrophosphorylase regions of At1g01220.1 (Trp34-Leu565) and Os03g0115100 (Trp44-Leu588) were used in the analysis shown in Figure 1A.

Accession Numbers
Sequence data from this article can be found in TAIR or GenBank/EMBL libraries under the accession numbers listed in Supplemental Table 3.

Supplemental Data

Supplemental Figure 1. The Man/L-Gal pathway for the generation of AsA in plants.

Supplemental Figure 2. Alignment of amino acid sequences of GMPPs and KJC proteins.

Supplemental Figure 3. Arabidopsis T-DNA insertion lines for KJC genes.

Supplemental Figure 4. GMPP activity in kjc mutants and KJC-overexpressing plants.

Supplemental Figure 5. Complementation of kjc-1 mutant with genomic KJC1 gene.

Supplemental Figure 6. Expression patterns of KJC1, KJC2, and VTC1.

Supplemental Figure 7. Expression of KJC1, KJC2, and VTC1 in kjc mutants and KJC-overexpressing plants.

Supplemental Figure 8. Seed development in kjc mutants.

Supplemental Figure 9. Protein gel blot analysis of N-glycans of glycoproteins.

Supplemental Figure 10. Sugar composition of GIPC in calli of kjc mutants.

Supplemental Figure 11. Preparation of native and point-mutated recombinant proteins.

Supplemental Figure 12. KJC/GMPP subunit α and VTC1/GMPP subunit β subfamilies.

Supplemental Figure 13. Interaction of KJC1 with USP in yeast cells.

Supplemental Table 1. Sequences of primers used in the present study.

Supplemental Table 2. Substrate specificity of rVTC1 in the absence and presence of rKJCs.

Supplemental Table 3. Accession numbers for amino acid sequences.

Supplemental File 1. Phylogenetic relationships shown in Figure 1.

Supplemental File 2. Phylogenetic relationships shown in Supplemental Figure 12.

ACKNOWLEDGMENTS
We thank O. Kosik (Rothamsted Research, UK) for valuable discussion on NDP-sugar analysis. This work was financially supported in part by a Grant-in-Aid for Scientific Research to T.K. (22770030) from the Japan Society of the Promotion of Science, and by Grant-in-Aid for Scientific Research (24114006) to Y.T. and T.K. from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. Support was also provided by the BBSRC Sustainable Bioenergy Centre: Cell wall sugars programme to P.D. (Grant BB/G016240/1) and by the RIKEN Foreign Postdoctoral Research program to J.C.M. J.C.M.’s work at the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under Contract DE-AC02-05CH11231.

AUTHOR CONTRIBUTIONS

Received June 1, 2015; revised November 6, 2015; accepted November 24, 2015; published December 15, 2015.

REFERENCES

Behmüler, R., Forstenlehner, I.C., Tenhaken, R., and Huber, C.G. (2014). Quantitative HPLC-MS analysis of nucleotide sugars in plant
KONJAC1 and 2 Are Key Factors for GDP-Mannose Generation and Affect l-Ascorbic Acid and Glucomannan Biosynthesis in Arabidopsis

Shota Sawake, Noriaki Tajima, Jenny C. Mortimer, Jeemeng Lao, Toshiki Ishikawa, Xiaolan Yu, Yukiko Yamanashi, Yoshihisa Yoshimi, Maki Kawai-Yamada, Paul Dupree, Yoichi Tsumuraya and Toshihisa Kotake

Plant Cell 2015;27;3397-3409; originally published online December 15, 2015;
DOI 10.1105/tpc.15.00379

This information is current as of October 28, 2017

Supplemental Data
/content/suppl/2015/12/14/tpc.15.00379.DC1.html

References
This article cites 62 articles, 26 of which can be accessed free at:
/content/27/12/3397.full.html#ref-list-1

Permissions

eTOCs
Sign up for eTOCs at:
http://www.plantcell.org/cgi/alerts/ctmain

CiteTrack Alerts
Sign up for CiteTrack Alerts at:
http://www.plantcell.org/cgi/alerts/ctmain

Subscription Information
Subscription Information for The Plant Cell and Plant Physiology is available at:
http://www.aspb.org/publications/subscriptions.cfm