Methylglyoxal and glyoxal are toxic reactive carbonyl species generated as byproducts of glycolysis. The preemption pathway for detoxification of these products is the glyoxalase (GLX) system, involving reactions catalyzed by GLXI and GLXII. In Arabidopsis, the GLX system is encoded by three homologs each of GLXI and GLXII, from which several isoforms are derived through alternative splicing. Schmitz et al. (pages 3234–3254) identified the physiologically relevant splice forms using sequencing data and demonstrated that the resulting isoforms have different subcellular localizations. They show that the Arabidopsis GLX system involves the cytosol, chloroplasts, and mitochondria, which harbor individual components that might be utilized at specific developmental stages and respond differentially to cellular sugar status. They propose a cellular model in which methylglyoxal and glyoxal can be detoxified directly at the cellular production site through specific glyoxalase isoforms. The cover image shows patterns of subcellular localization of different Arabidopsis GLXI and GLXII isoforms fused to yellow fluorescent protein and expressed in tobacco leaf protoplasts.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patterns and Consequences of Subgenome Differentiation Provide</td>
<td>2974</td>
</tr>
<tr>
<td>Insights into the Nature of Paleopolyploidy in Plants</td>
<td></td>
</tr>
<tr>
<td>Meixia Zhao, Biao Zhang, Damon Lisch, and Jianxin Ma</td>
<td></td>
</tr>
<tr>
<td>ALKBH10B Is an RNA N6-Methyladenosine Demethylase Affecting</td>
<td>2995</td>
</tr>
<tr>
<td>Arabidopsis Floral Transition</td>
<td></td>
</tr>
<tr>
<td>Hong-Chao Duan, Lian-Huan Wei, Chi Zhang, Ye Wang, Lin Chen,</td>
<td></td>
</tr>
<tr>
<td>Zhike Lu, Peng R. Chen, Chuan He, and Guifang Jia</td>
<td></td>
</tr>
<tr>
<td>Arabidopsis Pollen Fertility Requires the Transcription Factors</td>
<td>3012</td>
</tr>
<tr>
<td>CITF1 and SPL7 That Regulate Copper Delivery to Anthers and Jasmonic</td>
<td></td>
</tr>
<tr>
<td>Acid Synthesis</td>
<td></td>
</tr>
<tr>
<td>Jiapei Yan, Ju-Chen Chia, Huajin Sheng, Ha-il Jung,</td>
<td></td>
</tr>
<tr>
<td>Tetiana-Olena Zavodina, Lu Zhang, Rong Huang, Chen Jiao, Eric J.</td>
<td></td>
</tr>
<tr>
<td>Craft, Zhangjun Fei, Leon V. Kochian, and Olena K. Vatamaniuk</td>
<td></td>
</tr>
<tr>
<td>MAPKs Influence Pollen Tube Growth by Controlling the Formation of</td>
<td>3030</td>
</tr>
<tr>
<td>Phosphatidylinositol 4,5-Bisphosphate in an Apical Plasma Membrane</td>
<td></td>
</tr>
<tr>
<td>Domain</td>
<td></td>
</tr>
<tr>
<td>Franziska Hempel, Irene Stenzel, Mareike Heilmann,</td>
<td></td>
</tr>
<tr>
<td>Praveen Krishnamoorthy, Wilhelm Menzel, Ralph Golbik, Stefan Helm,</td>
<td></td>
</tr>
<tr>
<td>Dirk Dobritzsch, Sacha Baginsky, Justin Lee, Wolfgang Hoehnwenarter,</td>
<td></td>
</tr>
<tr>
<td>and Ingo Heilmann</td>
<td></td>
</tr>
<tr>
<td>EIN3 and PIF3 Form an Interdependent Module That Represses Chloroplast</td>
<td>3051</td>
</tr>
<tr>
<td>Development in Buried Seedlings</td>
<td></td>
</tr>
<tr>
<td>Xiaoqin Liu, Renlu Liu, Yue Li, Xing Shen, Shangwei Zhong, and Hui</td>
<td></td>
</tr>
<tr>
<td>Shi</td>
<td></td>
</tr>
<tr>
<td>Intracellular Distribution of Manganese by the Trans-Golgi Network</td>
<td>3068</td>
</tr>
<tr>
<td>Transporter NRAMP2 Is Critical for Photosynthesis and Cellular</td>
<td></td>
</tr>
<tr>
<td>Redox Homeostasis</td>
<td></td>
</tr>
<tr>
<td>Santiago Alejandro, Rémy Cailliatte, Carine Alcon, Léon Dirick,</td>
<td></td>
</tr>
<tr>
<td>Frédéric Domergue, David Correia, Loren Castrings, Jean-François</td>
<td></td>
</tr>
<tr>
<td>Briat, Stéphane Mari, and Catherine Curie</td>
<td></td>
</tr>
<tr>
<td>Shine-Dalgarno Sequences Play an Essential Role in the Translation</td>
<td>3085</td>
</tr>
<tr>
<td>of Plastid mRNAs in Tobacco</td>
<td></td>
</tr>
<tr>
<td>Lars B. Scharff, Miriam Ehrnthal, Marcin Janowski, Liam H. Childs,</td>
<td></td>
</tr>
<tr>
<td>Claudia Hasse, Jürgen Gremmels, Stephanie Ruf, Reimo Zoschke,</td>
<td></td>
</tr>
<tr>
<td>and Ralph Bock</td>
<td></td>
</tr>
<tr>
<td>DISTAG/TBCCd1 Is Required for Basal Cell Fate Determination in</td>
<td>3102</td>
</tr>
<tr>
<td>Ectocarpus</td>
<td></td>
</tr>
<tr>
<td>Olivier Godtroy, Toshiki Uji, Chikako Nagasato, Agnieszka P. Lipinska,</td>
<td></td>
</tr>
<tr>
<td>Delphine Scornet, Akira F. Peters, Komlan Avia, Sebastien Colin,</td>
<td></td>
</tr>
<tr>
<td>Laure Mignerot, Taizo Motomura, J. Mark Cock, and Susana M. Coelho</td>
<td></td>
</tr>
<tr>
<td>CORTICAL MICROTUBULE DISORDERING1 Is Required for Secondary Cell</td>
<td>3123</td>
</tr>
<tr>
<td>Wall Patternin in Xylem Vessels</td>
<td></td>
</tr>
<tr>
<td>Takema Sasaki, Hiro Fukuda, and Yoshihisa Oda</td>
<td></td>
</tr>
<tr>
<td>Differential Regulation of Two-Tiered Plant Immunity and Sexual</td>
<td>3140</td>
</tr>
<tr>
<td>Reproduction by ANXUR Receptor-Like Kinases</td>
<td></td>
</tr>
<tr>
<td>Hyunggon Mang, Baomin Feng, Zhangjian Hu, Aurielien Boisson-Dernier,</td>
<td></td>
</tr>
<tr>
<td>Christina M. Franck, Xiangzong Meng, Yanyan Huang, Jingeng Zhou,</td>
<td></td>
</tr>
<tr>
<td>Guangyuan Xu, Taotao Wang, Libo Shan, and Ping He</td>
<td></td>
</tr>
<tr>
<td>The Coiled-Coil and Nucleotide Binding Domains of BROWN PLANTHOPPER</td>
<td>3157</td>
</tr>
<tr>
<td>RESISTANCE14 Function in Signaling and Resistance against Planthopper</td>
<td></td>
</tr>
<tr>
<td>in Rice</td>
<td></td>
</tr>
<tr>
<td>Liang Hu, Yan Wu, Di Wu, Weiwei Rao, Jianping Guo, Yinhua Ma,</td>
<td></td>
</tr>
<tr>
<td>Zhizheng Wang, Xinxin Shangguan, Huying Wang, Chunxue Xu, Jin</td>
<td></td>
</tr>
<tr>
<td>Huang, Shaojie Shi, Rongzhi Chen, Bo Du, Lili Zhu, and Guangcun He</td>
<td></td>
</tr>
</tbody>
</table>
The Tomato DELLA Protein PROCERA Acts in Guard Cells to Promote Stomatal Closure
Ido Nir, Hagai Shohat, Irina Panizel, Neil Olszewski, Asaph Aharoni, and David Weiss

Genetic Components of Root Architecture Remodeling in Response to Salt Stress
Magdalena M. Julkowska, Iko T. Koevoets, Selena Mol, Huub Hoefsloot, Richard Feron, Mark A. Tester, Joost J.B. Keurentjes, Arthur Korte, Michel A. Haring, Gert-Jan de Boer, and Christa Testerink

Salt Stress and CTD PHOSPHATASE-LIKE4 Mediate the Switch between Production of Small Nuclear RNAs and mRNAs
Akihito Fukudome, Di Sun, Xiuren Zhang, and Hisashi Koiwa

Defense against Reactive Carbonyl Species Involves at Least Three Subcellular Compartments Where Individual Components of the System Respond to Cellular Sugar Status
Jessica Schmitz, Isabell C. Dittmar, Jörn D. Brockmann, Marc Schmidt, Meike Hüdlig, Alessandro W. Rossoni, and Veronica G. Maurino

Increased Phosphorylation of Ser-Gln Sites on SUPPRESSOR OF GAMMA RESPONSE1 Strengthens the DNA Damage Response in Arabidopsis thaliana
Kaoru Okamoto Yoshiyama, Kaori Kaminoyama, Tomoaki Sakamoto, and Seisuke Kimura

Mediator Complex Subunits MED2, MED5, MED16, and MED23 Genetically Interact in the Regulation of Phenylpropanoid Biosynthesis
Whitney L. Dolan, Brian P. Dilkes, Jake M. Stout, Nicholas D. Bonawitz, and Clint Chapple

Articles can be viewed without a subscription.