ON THE COVER

Sugar beet (Beta vulgaris) is one of a few species that uses sucrose as the major molecule for carbohydrate storage. In its second year of growth, when a thick fleshy taproot has formed and after experiencing a long period of cold (vernalization), carbohydrates are mobilized from the sucrose-filled taproot to fuel formation of the shoot and the subsequent development of generative organs. Rodrigues et al. (pages 3206–3223) document the reversal from a sink to a source of carbohydrate in sugar beet roots upon vernalization. The image on the cover shows a cross section, stained with Calcofluor-white and basic fuchsin, of a young sugar beet taproot with the first additional ring of vascular tissue and parenchyma surrounding the central cylinder. This young taproot—which at this point of development represents the major carbohydrate sink of the plant—will much later go through a major transition and will metamorphose to become a source of carbohydrates by translocating sucrose towards the shoot.

IN BRIEF

Follow That Protein: SNAP-Tagging Permits High-Resolution Protein Localization
P. William Hughes

A Damascene Moment: The Genetic Basis of Complex Petals in Nigella
Chris Whitewoods

Sugars Inform the Circadian Clock How to Shape Rice Shoots via the Strigolactone Pathway
Josh Strable

How COR27 and COR28 Promote Hypocotyl Growth: Bind to COP1 and Suppress HY5 Activity
Hanna Hörak

Tempting Fate: A Guanylate-Binding Protein Maintains Tomato Fruit Cell Differentiation
Rachel Shahan

More Than Just a FAD(5): Unsaturated Fatty Acids in Chloroplasts Elicit Protective Autoimmunity
Anne C. Rea

The Great Escape: How a Plant DNA Virus Hijacks an Imprinted Host Gene to Avoid Silencing
Matthias Benoît

RDR6 Is Essential for Double-Strand Break Formation during Male Meiosis in Rice
Junpeng Zhan

Tracking the Courier: In Planta Imaging of NADH/NAD+ Ratios with a Genetically Encoded Biosensor
Hanna Hörak

Peripheral? Not Really! The Extracellular Arabinogalactan Proteins Function in Calcium Signaling
Tian Zhang
REVIEW
PhasiRNAs in Plants: Their Biogenesis, Genic Sources, and Roles in Stress Responses, Development, and Reproduction
Yuanlong Liu, Chong Teng, Rui Xia, and Blake C. Meyers

3059

BREAKTHROUGH REPORT
Covalent Self-Labeling of Tagged Proteins with Chemical Fluorescent Dyes in BY-2 Cells and Arabidopsis Seedlings
Ryu J. Iwatate, Akira Yoshinari, Noriyoshi Yagi, Marek Grzybowski, Hiroaki Ogasawara, Mako Kamiya, Toru Komatsu, Masayasu Taki, Shigeo Yamauchi, Wolf B. Frommer, and Masayoshi Nakamura

3081

LARGE-SCALE BIOLOGY ARTICLE
Identification of the Key Regulatory Genes Involved in Elaborate Petal Development and Specialized Character Formation in Nigella damascena (Ranunculaceae)
Rui Zhang, Xuehao Fu, Caiyao Zhao, Jie Cheng, Hong Liao, Peipei Wang, Xu Yao, Xiaoshan Duan, Yi Yuan, Guixia Xu, Elena M. Kramer, Hongyan Shan, and Hongzhi Kong

3095

RESEARCH ARTICLES
Rapid Birth or Death of Centromeres on Fragmented Chromosomes in Maize
Yalin Liu, Handong Su, Jing Zhang, Lindan Shi, Yang Liu, Bing Zhang, Han Bai, Shuang Liang, Zhi Gao, James A. Birchler, and Fangpu Han

3113

The Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone Signaling and Sugar Sensing
Fang Wang, Tongwen Han, Qingxin Song, Wenxue Ye, Xiaoqiang Song, Jinfang Chu, Jiayang Li, and Z. Jeffrey Chen

3124

COR27 and COR28 Are Novel Regulators of the COP1–HY5 Regulatory Hub and Photomorphogenesis in Arabidopsis
Xu Li, Cuicui Liu, Zhiwei Zhao, Dingbang Ma, Jinyu Zhang, Yu Yang, Yawen Liu, and Hongtao Liu

3139

COLD-REGULATED GENE27 Integrates Signals from Light and the Circadian Clock to Promote Hypocotyl Growth in Arabidopsis
Wei Zhu, Hua Zhou, Fang Lin, Xianhai Zhao, Yan Jiang, Dongqing Xu, and Xing Wang Deng

3155

The Tip-Localized Phosphatidylserine Established by Arabidopsis ALA3 Is Crucial for Rab GTPase-Mediated Vesicle Trafficking and Pollen Tube Growth
Yuelong Zhou, Yang Yang, Yue Niu, TingTing Fan, Dong Qian, Changxin Luo, Yumei Shi, Lizehe An, and Yun Xiang

3170

The Tomato Guanylate-Binding Protein SIGBP1 Enables Fruit Tissue Differentiation by Maintaining Endopolyploid Cells in a Non-Proliferative State

3188

Vernalization Alters Sink and Source Identities and Reverses Phloem Translocation from Taproots to Shoots in Sugar Beet
Cristina Martins Rodrigues, Christina Müdsam, Isabel Keller, Wolfgang Zierer, Olaf Czarnecki, José Maria Corral, Frank Reinhardt, Petra Nieberl, Karin Fiedler-Wiechers, Frederik Sommer, Michael Schroda, Timo Mühlhaus, Karsten Harms, Ulf-Ingo Flügge, Uwe Sonnewald, Wolfgang Koch, Frank Ludewig, H. Ekkehard Neuhaus, and Benjamin Pommerrenig

3206
Brassinosteroid-Activated BRI1-EMS-SUPPRESSOR 1 Inhibits Flavonoid Biosynthesis and Coordinates Growth and UV-B Stress Responses in Plants
Tong Liang, Chen Shi, Yao Peng, Huijuan Tan, Peiyong Xin, Yu Yang, Fei Wang, Xu Li, Jinfang Chu, Jirong Huang, Yanhai Yin, and Hongtao Liu

FATTY ACID DESATURASE5 Is Required to Induce Autoimmune Responses in Gigantic Chloroplast Mutants of Arabidopsis
Bingqi Li, Jun Fang, Rahul Mohan Singh, Hailing Zi, Shanshan Lv, Renyi Liu, Vivek Dogra, and Chanhong Kim

DNA Geminivirus Infection Induces an Imprinted E3 Ligase Gene to Epigenetically Activate Viral Gene Transcription
Zhong-Qi Chen, Jian-Hua Zhao, Qian Chen, Zhong-Hui Zhang, Jie Li, Zhong-Xin Guo, Qi Xie, Shou-Wei Ding, and Hui-Shan Guo

Oryza sativa RNA-Dependent RNA Polymerase 6 Contributes to Double-Strand Break Formation in Meiosis
changzhen liu, yi shen, baoxiang qin, huili wen, jiawen cheng, fei mao, wengqin shi, ding tang, guijie du, yafei li, yufeng wu, and zhukuan cheng

SINAT E3 Ubiquitin Ligases Mediate FREE1 and VPS23A Degradation to Modulate Abscisic Acid Signaling
Fan-Nv Xia, Baiquan Zeng, Hui-Shan Liu, Hua Qi, Li-Juan Xie, Lu-Jun Yu, Qin-Fang Chen, Jian-Feng Li, Yue-Qin Chen, Liwen Jiang, and Shi Xiao

Constitutive Activation of Leucine-Rich Repeat Receptor Kinase Signaling Pathways by BAK1-INTERACTING RECEPTOR-LIKE KINASE3 Chimera
Ulrich Hohmann, Priya Ramakrishna, Kai Wang, Laura Lorenzo-Orts, Joel Nicolet, Agnes Henschen, Marie Barberon, Martin Bayer, and Michael Hothorn

In Vivo NADH/NAD\(^+\) Biosensing Reveals the Dynamics of Cytosolic Redox Metabolism in Plants
Janina Steinbeck, Philippe Fuchs, Yuri L. Negroni, Marlene Elsässer, Sophie Lichtenaüer, Yvonne Stockdreher, Elias Feitosa-Araujo, Johanna B. Kroll, Jan-Ole Niemeier, Christoph Humberg, Edward N. Smith, Marie Mai, Adriano Nunes-Nesi, Andreas J. Meyer, Michela Zottini, Bruce Morgan, Stephan Wagner, and Markus Schwarzländer

Calcium Binding by Arabinogalactan Polysaccharides Is Important for Normal Plant Development
Federico Lopez-Hernandez, Theodora Tryfona, Annalisa Rizza, Xiaolan L. Yu, Matthew O.B. Harris, Alex A.R. Webb, Toshihisa Kotake, and Paul Dupree

[OPEN] Articles can be viewed without a subscription.
[CC-BY] Article free via Creative Commons CC-BY 4.0 license.