LETTER TO THE EDITOR

A LIM Motif Is Present in a Pollen-Specific Protein

We have recently described a sunflower cDNA sequence coding for a pollen-specific protein (SF3) with putative zinc finger domains (Baltz et al., 1992). In a more recent analysis we have found that these domains correspond to the conserved LIM motif identified so far only in a family of metal binding, cysteine-rich proteins from animals. This motif, r-55 amino acids long, is characterized by a unique organization of cysteine and histidine residues into two adjacent putative zinc fingers. LIM motif-containing proteins include developmental regulators such as the rat insulin gene enhancer binding protein ISL-1 (Karlsson et al., 1990), the Caenorhabditis elegans proteins LIN-11 (Freyd et al., 1990) and MEC-3 (Way and Chalfie, 1988), the Drosophila APTEROUS protein (Cohen et al., 1992), the Xenopus XLIM-1 protein (Taira et al., 1992), and the mammalian oncoproteins TTG-1 and TTG-2 (also known as RHOM-2) of the rhombotin family (McGuire et al., 1989; Boehm et al., 1990, 1991; Royer-Pokora et al., 1991). The mammalian cysteine-rich proteins CRIP (Birkenmeyer and Gordon, 1988), hCRP (Liebhaber et al., 1990; Wang et al., 1992), and ESP-1 (Nalik et al., 1989), all of which are of yet unknown function, also contain LIM motifs. LIM motifs are found either alone (in CRIP, TTG-1, TTG-2, ESP-1, and hCRP) or in association with a homeodomain (in MEC-3, ISL-1, LIN-11, XLIM-1, and APTEROUS).

Figure 1 shows an alignment of the LIM motifs of the pollen-specific protein SF3 with those of the animal LIM proteins. Conserved residues are shown in bold type.

Figure 1. Alignment of the SF3 LIM Motifs with Other LIM Sequences.

Bold type letters indicate conserved and semiconserved residues. Unconserved residues are in standard type. Putative zinc fingers in the LIM domains are delimited by horizontal brackets. Potential metal-chelating residues are underlined. LIM subfamily-specific residues are boxed. CRIP and ESP-1 have only one LIM motif, whereas all of the other proteins have two LIM motifs. CRIP and ESP-1 are highly related, as are TTG-1 and TTG-2 (which is identical to RHOM-2).
LETTER TO THE EDITOR

It is possible that the SF3 protein is involved in controlling pollen-specific processes such as male gamete maturation, pollen tube formation, or even fertilization. However, it is also possible that this protein plays another, yet unknown, biological function. Further experiments should clarify this point.

Rachel Baltz
Jean-Luc Evrard
Claire Domon
André Steinmetz

Institut de Biologie Moléculaire des Plantes
C.N.R.S.
F-67084 Strasbourg
France

REFERENCES


A LIM motif is present in a pollen-specific protein.
R Baltz, J L Evrard, C Domon and A Steinmetz
Plant Cell 1992;4;1465-1466
DOI 10.1105/tpc.4.12.1465

This information is current as of June 22, 2017