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Figure 4. Oxygen Regulation in Indeterminate Legume Nodules.

Indeterminate legume nodules consist of five distinct regions: 1, nodule meristem; 2, prefixation zone; 3, interzone; 4, nitrogen fixation zone;
and 5, senescence zone. An oxygen barrier is present in the nodule parenchyma surrounding the nodule vascular bundle (shown in red) that
reduces oxygen access to the central tissue of the nodule. However, because this oxygen barrier is interrupted in the meristem, an oxygen gradient
forms that extends from the distal to the proximal end of the nodule (shown by blue shading). In the first cell layer of the interzone (shown by
the dashed green line), the low oxygen concentration leads to the events described in the green box. Low oxygen concentrations activate the
bacterial transmembrane oxygen sensor protein FixL, which in turn phosphorylates and thereby activates the transcriptional activator FixJ. The
activated FixJ protein (FixJ*) induces transcription of nifA and fixK, and the protein products of these genes induce the transcription of different
genes encoding proteins involved in the process of nitrogen fixation. As an additional level of control, the NifA protein itself is oxygen sensitive.
Leghemoglobin (/b) genes are expressed in the prefixation zone, the interzone, and the fixation zone. Leghemoglobin proteins transport oxygen
to sites of respiration, thus enabling ATP production in a low-oxygen environment.

the plant against the "intracellular" bacteria (Nap and Bisseling,
1990; Verma, 1992; Werner, 1992).

Upon release from the infection thread, bacteria become
internalized in legume nodules by a process resembling en-
docytosis (Basset et al., 1977). In actinorhizal nodules, however,
Frankia hyphae penetrate the cell wall of cortical cells and start
branching, while the plasma membrane invaginates and cell
wall material is deposited around the growing hyphae. Thus,
Frankia is not released into the plant cytoplasm and stays sur-
rounded by encapsulating cell wall material throughout the
symbiosis (Berry and Sunell, 1990). Subsequently, the en-
dosymbionts multiply, enlarge, and eventually occupy most of
the volume of the infected cell. During this process, growth
of the microsymbiont and the surrounding membrane is syn-
chronized by an unknown mechanism. This process of
endosymbiont internalization and propagation requires mas-
sive membrane synthesis—in the case of legume nodules, 30
times the amount of plasma membrane synthesis (Verma,
1992).

The membrane surrounding the microsymbiont is derived
from the host plasma membrane. The PBM of legume nodules
has phospholipid (Perotto et al., 1995) and protein composi-
tion that are different from those of the plasma membrane
(Verma, 1992) and that (presumably) endow it with special-
ized functions. The PBM contains several nodulins and may
also contain a rhizobial protein (Fortin et al., 1985; Miao et al.,
1992). Within the peribacteroid space between the bacteroids
and the PBM, several proteins are present that are also found
in vacuoles, for example, a-mannosidase II (Kinnback et al.,
1987; Mellor and Werner, 1987), proteases (Mellor et al., 1984),
and protease inhibitor (Garbers et al., 1988; Manen et al., 1991).
Thus, the PBM may have adapted some properties of the
tonoplast membrane (Mellor and Werner, 1987). Indeed, it has
been proposed that the symbiosome (the PBM with enclosed
bacteroids) has properties of a lytic compartment continuously
being neutralized by ammonia exported by the bacteroids
(Kannenberg and Brewin, 1989). According to this hypothe-
sis, one would expect that the lack of bacterial nitrogen fixation
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would lead to bacteroid degradation. In fact, there is evidence 
for premature bacteroid degradation of nonfixing Rhizobium 
mutants (for example, see Hirsch and Smith, 1987). 

The extensive membrane biosynthesis in infected cells, to- 
gether with the possibility to manipulate gene expression in 
root nodules without affecting other parts of the plant, has made 
the PBM an ideal system to study membrane biogenesis in 
plants. By using an antisense strategy in combination with 
nodule-specific promoters, it has been possible to show that 
homologs of the Yptl protein (Schmitt et al., 1986), which 
controls membrane biosynthesis in yeast, are involved in PBM 
biosynthesis in soybean nodules (Cheon et al., 1993). In nod- 
ules expressing antisense RNA of such a homolog, the number 
of bacteroids per cell was reduced and the infected cells did 
not expand. 

Because the PBM constitutes the interface between bac- 
teroids and host plants, it plays an important role in controlling 
the exchange of metabolites. These include ammonium, the 
product of nitrogen fixation, and heme, the prosthetic group 
of the oxygen transport protein leghemoglobin, which are ex- 
ported by the bacteroids to the host cytoplasm (OGara and 
Shanmugan, 1976; Nadler and Avissar, 1977), as well as car- 
bon sources and probably also assimilated ammonium, which 
are supplied by the host to the bacteroids (De Bruijn et al., 
1989; Werner, 1992). Which proteins are involved in the trans- 
port of these compounds is largely unclear. Bacteroids express 
a dicarboxylic acid uptake system, isolated bacteroids take up 
dicarboxylic acids, and mutants in this uptake are symbioti- 
cally ineffective (Ronson et al., 1987; Werner, 1992), all of which 
indicates that dicarboxylic acids are likely to be the carbon 
source supplied by the plant to the intracellular bacteria. It has 
been suggested that nodulin-26 transports the dicarboxylic 
acids to the bacteroids (Ouyang et al., 1991). However, its low 
substrate specificity in vitro indicates that it is more likely to 
form a pore responsible for the uptake of ions or small metab- 
olites in general (Weaver et al., 1994). 

After division, the intracellular bacteria differentiate into bac- 
teroids. Because both plant (Hgser et al., 1992) and bacterial 
(Glazebrooket al., 1993) mutants have been identified that are 
specifically defective in bacteroid differentiation, this process 
may be independent of internalization of bacteria by the in- 
fected cells. Bacterial mutants specifically defective in the 
release of bacteria from the infection thread are known as well 
(De Maagd et al., 1989). Bacterial nod genes are expressed 
in the dista1 part of the prefixation zone (Figure 4; Schlaman 
et al., 1991), indicating that Nod factors may play a role in sig- 
na1 exchange within the nodule. However, because bacterial 
release and bacteroid development can be impaired in bacter- 
ia1 strains with functional nodgenes, other bacterial and/or plant 
signals must also play a role in these steps of development. 

Metabolite Exchange between Nodule and Plant: 
Nltrogen Transport 

In the context of the whole plant, the root nodule functions as 
a nitrogen source and a carbon sink. In fact, it has been 

suggested that legume nodules evolved from carbon storage 
organs (Joshi et al., 1993). The carbon source transported from 
the leaves to the nodules is sucrose (Hawker, 1985), which is 
introduced into nodule metabolism through degradation by su- 
crose synthase. This enzyme is present at high levels in both 
legumes and actinorhizal nodules (Thummler and Verma, 1987; 
M. van Ghelue, A. Ribeiro, A. Akkermans, B. Solheim, A. van 
Kammen, T. Bisseling, and K. Pawlowski, unpublished obser- 
vations). The form in which nitrogen is transported depends 
on the plant: temperate legumes, which generally form indeter- 
minate nodules, export amides, whereas tropical legumes, 
which form determinate nodules, export ureides. Actinorhizal 
plants export mostly amides, with the exceptions of Alnus sp 
and Casuafina eguisetifolia, which are citrulline exporters 
(Schubert, 1986; Sellstedt and Atkins, 1991). In all cases, am- 
monium is exported by the microsymbiont as the first product 
of nitrogen fixation and is assimilated in the cytoplasm of nod- 
ule cells via the glutamine synthetase (GS)/glutamate synthase 
pathway (Schubert, 1986; see Lam et al., 1995, this issue). Sub- 
sequently, glutamate is metabolized into nitrogen transport 
forms. The products of severa1 late nodulin genes play a role 
in this metabolism. 

In ureide-producing determinate legume nodules, the as- 
similation of ammonium by GS and the biosynthesis of ureides 
are spatially separated to some extent: whereas GS is ex- 
pressed in both infected and uninfected cells of soybean 
nodules (Miao et al., 1991), uricase (nodulin-35), a key enzyme 
in purine oxidation that catalyzes the oxidation of uric acid to 
allantoin, has been found in peroxisomes of uninfected cells 
only (Hanks et al., 1981; Nguyen et al., 1985). Allantoinase, 
which catalyzes the next step in purine oxidation, has also been 
localized to uninfected cells (Hanks et al., 1981). The uninfected 
cells of determinate nodules also seem to be involved in the 
transport of fixed nitrogen. These cells constitute a more or 
less continuous network throughout the whole central tissue 
that facilitates the transport of assimilated ammonium to the 
nodule vascular bundle (Selker, 1988). An elaborate tubular 
endoplasmic reticulum system that is appressed to the perox- 
isomes, where ureides are produced, and continues through 
plasmodesmata connects all uninfected cells (Newcomb et al., 
1985). In indeterminate nodules, by contrast, no specialized 
function has been assigned to the uninfected cells in the cen- 
tral tissue. Instead, efficient transport of fixed nitrogen is 
achieved by the presence of transfer cells in the pericycle of 
the nodule vascular bundles (Pate et al., 1969). 

Oxygen Protection of Bacterial Nitrogen Fixation 

Nitrogenase is highly oxygen sensitive because one of its com- 
ponents, the MoFe cofactor, is irreversibly denatured by oxygen 
(Shaw and Brill, 1977). On the other hand, the large amount 
of energy required for this reaction has to be generated by ox- 
idative processes; thus, there is a high demand for oxygen 
in nodules. Different strategies are used in different symbiotic 
interactions to cope with this paradox. In legume nodules, a 
low oxygen tension in the central part of the nodule is achieved 
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by a combination of a high metabolic activity of the microsym- 
biont and an oxygen diffusion barrier in the periphery of the 
nodule, that is, in the nodule parenchyma (Figure 4; Witty et 
al., 1986). Because oxygen diffuses -104 times faster through 
air than through water, it is generally assumed that oxygen 
diffusion in nodules occurs via the intercellular spaces. The 
nodule parenchyma contains very few and small intercellular 
spaces, and this morphology is thought to be responsible for 
the block in oxygen diffusion (Witty et al., 1986). In the nodule 
parenchyma, nodulin genes such as ENODP are expressed 
whose protein products might contribute to the construction 
of the oxygen barrier (Van de Wiel et al., 1990). In the infected 
cells of the central part of the nodule, high levels of the oxy- 
gen carrier protein leghemoglobin facilitate oxygen diffusion. 
In this way, the microsymbiont is provided with sufficient oxygen 
to generate energy within a low overall oxygen concentration 
(Figure 4; Appleby, 1984). 

In contrast to Rhizobiuni, Frankia bacteria can form special- 
ized vesicles in which nitrogenase is protected from oxygen 
(Figure 1B; Benson and Silvester, 1993). However, vesicle for- 
mation during symbiosis does not take place in all Frankia- 
root interactions (Benson and Silvester, 1993) and does not 
always seem to provide full oxygen protection of nitrogenase 
(Tjepkema, 1983; Kleemann et al., 1994). In thesecases, an 
oxygen diffusion barrier is established around groups of in- 
fected cells by lignification of the walls of adjacent uninfected 
cells (Berg and McDowell, 1988; Zeng et al., 1989). In addi- 
tion, the oxygen transport protein hemoglobin, the equivalent 
of leghemoglobin, is found in the infected cells (Fleming et 
al., 1987; Tjepkema and Asa, 1987; Jacobsen-Lyon et al., 1995). 

As in actinorhizal symbioses, in the Nostoc-Gunnera sym- 
biosis, oxygen protection of nitrogen fixation is achieved by 
the formation of a specialized compartment containing nitroge- 
nase: Nostoc forms heterocysts that are protected from oxygen 
by a glycolipid cell wall (Figure 1C; Bergman et al., 1992). 

Gene Regulation in Nodules 

To obtain nitrogen-fixing root nodules, several genes of both 
symbionts are specifically induced or repressed during nod- 
ule development. The use of reporter genes as well as in situ 
hybridization studies has provided detailed insights into the 
spatial and temporal regulation of such genes in indeterminate 
nodules. In such nodules, major, sudden developmental 
changes occur at the transition of the prefixation zone to the 
interzone: starch is deposited in the plastids of the infected 
cells, and the bacteroid morphology alters (Figures 1A and 4; 
Vasse et al., 1990). These events are accompanied by changes 
in bacterial gene expression: transcription of bacterial nif genes, 
which encode.enzymes involved in the nitrogen fixation pro- 
cess, is induced, whereas expression of the bacterial outer 
membrane protein gene ropA is dramatically reduced (Yang 
et al., 1991; De Maagd et al., 1994). 

All of these events, together with dramatic changes in plant 
gene expression (see later discussion), take place within a 

single cell layer. What plant factor causes this rapid change 
in bacterial differentiation? To answer this question, rhizobial 
nifgene regulation has been studied extensively and has gener- 
ally been found to be induced by microaerobic conditions 
(reviewed in Merrick, 1992; Fischer, 1994). The regulation of 
nif gene expression in R. meliloti is described here (see Fig- 
ure 4) because it can be correlated to morphological changes 
observed in an indeterminate nodule. 

Transcription of R. meliloti nitrogen fixation (nifjix) genes is 
controlled either by the transcriptional activator NifA together 
with the sigma factor RpoN (Gussin et al., 1986; Morrett and 
Buck, 1989) or, for some genes, by the transcriptional activa- 
tor FixK. NifA activity is under oxygen control at two levels: 
the NifA protein itself is oxygen sensitive (Krey et al., 1992), 
and its transcription, together with that of fixK, is induced un- 
der microaerobic conditions by the transcriptional activator FixJ 
(David et al., 1988). FixJ is part of a two-component system 
that includes the oxygen-sensing hemoprotein FixL. FixJ is 
activated by FixL by phosphorylation upon microaerobiosis 
(see Figure 4; David et al., 1988; Gilles-Gonzalez et al., 1991; 
Da Re et al., 1994). It is the activated FixJ protein that in turn 
induces the transcription of nifA and fixK (Batut et al., 1989). 

Although microaerobic conditions are essential for rhizobial 
nif gene transcription in symbiosis, it has long been debated 
whether the reduction of oxygen concentration is the sole 
regulatory factor for the induction of nif gene expression in the 
interzone. Recent results (Soupene et al., 1995) have shown 
that R. meliloti nif gene expression in plants can be modified 
by changing the externa1 oxygen concentration: in nodules im- 
mersed in agar, nif gene expression is extended to a younger 
part of the nodule and now also occurs in the prefixation zone. 
This effect is controlled by the FixLJ system, because the same 
result is obtained by nodulation with a strain carrying a con- 
stitutively active mutant form of FixJ (FixJ'; see Figure 4). Thus, 
oxygen concentration seems to be a major factor in control- 
ling symbiotic nif gene transcription during symbiosis. In 
contrast, ropA expression is not under oxygen control in free- 
living bacteria, and ropA repression can even be uncoupled 
from nif gene induction in the same cell layer. In mutant nod- 
ules induced by a Rhizobium strain whose host range had been 
manipulated, rop4 mRNA distribution was equal to that in wild- 
type nodules, whereas bacteroid differentiation and nif gene 
induction did not take place (De Maagd et al., 1994). There- 
fore, further analyses are required to determine the other 
regulatory factors responsible for the changes in bacterial gene 
expression in the first cell layer of the interzone. 

The expression of several plant genes is also controlled at 
the transition of the prefixation zone to the interzone as well 
as in other zones of the central tissue (Scheres et al., 1990a, 
1990b; Yang et al., 1991; Kardailsky et al., 1993; Matvienko 
et al., 1994). However, the expression of these genes seems 
not to be controlled by the oxygen tension (Govers et al., 1986) 
but rather to be under developmental control. To analyze the 
regulators of plant nodulin gene expression, the expression 
of nodulin promoter-0-glucuronidase fusions has been stud- 
ied in heterologous legumes (Forde et al., 1990; Szabados et 
al., 1990; Brears et al., 1991). 
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The most extensive studies have been performed on the 
leghemoglobin genes. So far, promoter analysis of these genes 
has led to the identification of a so-called grgan-specific cis- 
acting slement (OSE; Ramlov et al., 1993), also called the 
- nodule-infected gell-specific glement (NICE; Szczyglowski et 
al., 1994), which has also been found in the promoter of the 
nodule-specific hemoglobin gene of the actinorhizal plant 
Casuarina glauca (Jacobsen-Lyon et al., 1995). A C. glauca 
hemoglobin promoter-p-glucuronidase fusion is expressed in 
the infected cells of Rhizobium-induced nodules from Lotus 
cornicularus (Jacobsen-Lyon et al., 1995), which implies that 
similar regulatory factors are involved in both legume and ac- 
tinorhizal systems. However, the corresponding transcription 
factors that bind to these promoter elements have yet to be 
identified. 

CONCLUDING REMARKS 

Symbioses between higher plants and nitrogen-fixing microor- 
ganisms provide a niche in which the prokaryote can fix 
nitrogen in a very efficient manner. A comparison of the de- 
velopment and functioning of the three different nitrogen-fixing 
symbioses has provided and continues to provide insight into 
how both common and unique strategies have evolved to solve 
problems imposed by various requirements of nitrogen fixation. 
For instance, in all systems the plant copes with intracellular 
bacteria by enclosing them in a plasmalemma-derived mem- 
brane, whereas protection of the enzyme nitrogenase against 
oxygen is achieved in diverse manners. 

An intriguing aspect of the nitrogen-fixing symbioses is their 
host specificity, whose strictness varies in the different sys- 
tems. In the Gunnera-Nostoc system, only a single plant genus 
can establish the interaction, whereas rhizobia can interact 
with most members of the legume family. Frankia bacteria are 
the most promiscuous microsymbionts, because they can es- 
tablish a symbiosis with plants belonging to different families; 
however, recent molecular phylogenetic studies have shown 
that these families are actually rather closely related (Chase 
et al., 1993; Maggia and Bousquet, 1994). 

Host specificity provides a serious restraint in the applica- 
tion of symbiotic nitrogen fixation in agriculture, because most 
major crops are unable to establish such a symbiosis. There- 
fore, it is not surprising that since the development of plant 
genetic engineering techniques, an important goal has been 
to transfer the ability to form a nitrogen-fixing symbiosis to im- 
portant crops, such as rice. However, molecular genetic 
research has shown that a relatively high number of specific 
host functions are involved in forming a nitrogen-fixing organ. 
Therefore, it has seemed impossible to achieve this aim with 
the methodology available. 

The possibility of reaching this goal has become newly in- 
vigorated as a result of research indicating that mechanisms 
controlling nodule development might be derived from proces- 
ses common to all plants. For example, Nod factors might be 

recognized by receptors that are also present in nonlegumes; 
preinfection thread formation appears to involve a mechanism 
derived from the cell cycle machinery; and severa1 plant pro- 
teins that were thought to function exclusively in nodules 
appear to have nonsymbiotic counterparts, as has been de- 
scribed for soybean nodulin-26 (Miao and Verma, 1993) and 
Casuarina hemoglobin (Jacobsen-Lyon et al., 1995). Further- 
more, actinorhizal nodules and nodules induced by rhizobia 
on the nonlegume Parasponia closely resemble lateral roots 
(Hirsch, 1992). Thus, the processes modified in the nodule de- 
velopmental programs are common to all higher plants. Studies 
of how these common processes have been altered might 
therefore provide new means to design strategies by which 
nonlegume plants can be given the ability to establish a sym- 
biosis with a nitrogen-fixing microbe. 
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