Rubisco in Marine Symbiotic Dinoflagellates: Form II Enzymes in Eukaryotic Oxygenic Phototrophs Encoded by a Nuclear Multigene Family

Rob Rowan,a,b, Spencer M. Whitney,c Amanda Fowler,c and David Yellowleesc,d

a Australian Institute of Marine Science, PMB No. 3, Townsville MC, Queensland 4810, Australia
b Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama
c Department of Molecular Sciences, James Cook University of North Queensland, Townsville, Queensland 4811, Australia

genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were cloned from dinoflagellate symbionts (Symbiodinium spp) of the giant clam Tridacna gigas and characterized. Strikingly, Symbiodinium Rubisco is completely different from other eukaryotic (form I) Rubiscos: it is a form II enzyme that is ~65% identical to Rubisco from Rhodospirillum rubrum (Rubisco forms I and II are ~25 to 30% identical); it is nuclear encoded by a multigene family; and the predominantly expressed Rubisco is encoded as a precursor polyprotein. One clone appears to contain a predominantly expressed Rubisco locus (rbcA), as determined by RNA gel blot analysis of Symbiodinium RNA and sequencing of purified Rubisco protein. Another contains an enigmatic locus (rbcG) that exhibits an unprecedented pattern of amino acid replacement but does not appear to be a pseudogene. The expression of rbcG has not been analyzed; it was detected only in the minor of two taxa of Symbiodinium that occur together in T. gigas. This study confirms and describes a previously unrecognized branch of Rubisco's evolution: a eukaryotic form II enzyme that participates in oxygenic photosynthesis and is encoded by a diverse, nuclear multigene family.

INTRODUCTION

Symbiodinium is a genus of phototrophic, peridinin-containing dinoflagellates that live as endosymbionts (zooxanthellae) in a wide variety of tropical marine invertebrates (reviewed in Trench, 1987, 1992). For example, all reef-building corals harbor— and are dependent on— Symbiodinium. As in any phototrophic system, carbon assimilation is central to the energetics of zooxanthella–invertebrate symbioses. Photosynthetic organisms fix CO2 into organic compounds via the photosynthetic carbon reduction (Calvin-Benson) cycle. The initial and rate-limiting step, in which ribulose-1,5-bisphosphate (RuBP) and CO2 are converted to two molecules of 3-phosphoglycerate, is catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39). Labeling experiments confirmed that Rubisco is the primary CO2 fixation enzyme in Symbiodinium freshly isolated from a coral (Streamer et al., 1993).

Despite their ecological significance, relatively little is known about carbon assimilation in dinoflagellates. "Typical" phototrophic dinoflagellates uniquely contain peridinin as the major light-harvesting carotenoid; the few exceptional species may or do contain chloroplasts acquired from other algal classes (Gibbs, 1990; Whatley, 1993). Active Rubisco has not been purified from peridinin-containing dinoflagellates, owing to the enzyme's instability after cell lysis, but inactive protein was purified after labeling it with the tight-binding inhibitor 14C-carboxyarabinitol bisphosphate (Whitney and Yellowlees, 1995). Surprisingly, an initial characterization of proteins from Symbiodinium and from the free-living species Amphidinium carterae indicated similarity with the bacterial form II Rubisco (Whitney et al., 1995). Recently, a form II Rubisco was also found in the free-living dinoflagellate Gonyaulax polyedra (Morse et al., 1995). All other known eukaryotic Rubiscos are form I enzymes.

Structurally (reviewed in Tabita, 1988; Hartman and Harpel, 1994) and catalytically (Jordan and Ogren, 1981), the differences between form I and form II Rubiscos are considerable. Of particular significance is the much lower specificity of known form II enzymes for CO2 versus O2 (Jordan and Ogren, 1981), restricting their role in CO2 fixation to anaerobic environments (Tabita, 1988). Suppression of Rubisco's oxygenase activity is a major theme in the evolution of oxygenic photosynthesis (e.g., Hatch, 1971; Jordan and Ogren, 1981; Beardall, 1989; Read and Tabita, 1994), and the involvement of a form II enzyme poses a unique situation. As such, dinoflagellates might provide unique insights into the evolution of photosynthesis.

Here, we report the isolation and characterization of two loci from Symbiodinium—one encoding Rubisco and the other
Figure 1. Sequence of the rbcA Locus.

The identified ORF is presented in boldface uppercase letters. Other letters indicate 5' and 3' flanking sequences (uppercase) and introns (lowercase).
encodes a "Rubisco-like" protein. In every respect, these differ from Rubisco genes in other eukaryotes: *Symbiodinium* Rubisco is clearly a form II enzyme that is \(~=\)65% identical with that from *Rhodospirillum rubrum* (form I and II Rubiscos are only \(~=\)25 to 30% identical [Narang et al., 1984]); it is nuclear encoded by a multigene family; and a predominantly expressed enzyme is encoded as a precursor polypeptide. The inferred amino acid sequence of one *Symbiodinium* gene violates the "rules" established for all other Rubiscos, but it does not appear to be a pseudogene. This Rubisco-like gene demonstrates the evolutionary capacity of a multigene family.

Thus, both known forms of Rubisco participated in the evolution of eukaryotic photosynthesis, and they have followed different genetic pathways. Whereas the origin(s) of eukaryotic form I Rubiscos is discussed with the origin(s) of the plastids that encode them (Martin et al., 1992; Morden et al., 1992; Palmer, 1993), the history of nuclear-encoded form II enzymes is open to wider speculation. The genetic complexity of *Symbiodinium* Rubisco may reflect the greater evolutionary potential of a nuclear-encoded as opposed to a plastid-encoded gene, it may be relevant to the physiology of endosymbiosis, and it should provide valuable material for research into this important enzyme.

RESULTS

Amino acid sequences from each of eight Rubisco peptides could be aligned with the form II Rubisco of *R. rubrum* (alignment not shown). From these data, a polymerase chain reaction (PCR) amplification strategy was designed so that if *Symbiodinium* and *R. rubrum* genes were exactly collinear, it would yield 819 bp of a corresponding *Symbiodinium* gene. Instead, the PCR product was \(~=\)1000 bp (data not shown). Restriction enzyme-digested *Symbiodinium* DNA contained many fragments that hybridized to this PCR product (data not shown, but see below); BamHI fragments of \(~=\)20 and 14 kb were obtained in the vector EMBL3. The two clones, designated rbcA and rbcG, respectively, have different restriction maps (data not shown).

Analysis of rbcA

Rubisco-encoding sequences were localized by DNA gel blotting to an \(~=\)10-kb EcoRI fragment of rbcA (data not shown), which was sequenced in its entirety. Part of this sequence is presented in Figure 1. The Rubisco-encoding locus (rbcA), as interpreted here, is summarized schematically in Figure 2. The predicted protein sequence is presented in Figure 3.

Protein-encoding regions were inferred by similarity (after conceptual translation) to *R. rubrum* Rubisco. They occur in three tandem copies (designated genes rbcA1, rbcA2, and rbcA3, in the 5' to 3' direction) that, with the exception of one nonsynonymous substitution in rbcA3 (Asn replaced by Lys; codons at positions 2069, 3967, and 5866 in Figure 1), encode identical proteins. There is good agreement between the predicted amino acid sequence and the peptide sequence data (122 matches of 125 amino acids that could be determined with confidence, of seven additional positions at which two amino acids seemed equally likely, rbcA encodes one of those residues in six instances; 122/132 matches = 92%; peptide sequence data presented within parentheses in Figure 3). Each gene is interrupted by two introns. Intron 2 accounts for the increased size of the PCR product, compared with the prediction from a bacterial gene (see above).

Thus, *rbcA* appears to encode a polypeptide of at least (the actual translation start site remains unspecified) 1501 amino acids (Figure 3), which is processed to yield three Rubisco polypeptides of 485 amino acids each; their calculated molecular mass (53.2 kDa) agrees well with the estimate of 56 kDa for purified Rubisco subunits (Whitney and Yellowlees, 1995).

Introns (designated by lowercase letters in Figure 1) were confirmed by sequencing a cDNA clone that encodes one complete Rubisco polypeptide. The clone was obtained by PCR amplification of oligo(dT)-primed *Symbiodinium* cDNA, using the 5' and 3' terminal sequences of rbcA3 for the primers and sequenced completely (S.M. Whitney, unpublished data). The 5' intron (intron 1) is identical in position and similar in sequence (two substitutions) in rbcA2 and rbcA3. Intron 1 in rbcA1 is different both in sequence and (apparently) in position, with a shift
The ORF identified in Figure 1 encodes three Rubisco subunits of 485 amino acids, separated by spacer peptides (underlined). Sequences obtained directly from Rubisco peptides are presented in Figure 3. As given in Figure 1, the ORF encoded by rbcA is 4503 nucleotides, which is ~700 nucleotides smaller than this RNA. This difference can be accounted for by transcribed sequences on the 5' and 3' side (detected by probes S0.45 and D72, respectively). In addition, the efficient selection (~95%) of this RNA by chromatography on oligo(dT) cellulose (data not shown) implies a poly(A) tail.

Sequence differences among rbcA1, rbcA2, and rbcA3 are conspicuous only at the 5' end of rbcA1. These include a different intron 1 and nine synonymous nucleotide substitutions (in 20 codons) in exon 1. In comparison, exon 1 is identical in rbcA2 and rbcA3, all three exon 2 sequences (94 codons) are identical, and exon 3 sequences exhibit 11 synonymous substitutions by 5 bp in the 3' direction (relative to its position in rbcA2/3), generating agreement with the cDNA and the N-terminal protein sequences. Intron 2 is identical in rbcA1, rbcA2, and rbcA3.

RNA gel blot analyses presented in Figure 4 support the above interpretation of rbcA. Probe H1.9, which includes all three exons, both introns, and the intergenic spacer (probes are diagrammed in Figure 2), detected an abundant (implied by the strength of the signal; see Figure 4 legend for details) RNA of ~5200 nucleotides. The same (size of) RNA was also detected by probe S0.45, which includes 5' flanking sequences, by probe SP, which includes most of the 69-bp intergenic spacer and 4 bp of exon 3, and by probe D72, which includes 3' flanking sequences. (Probe D72, which extends 3268 bp beyond the sequence presented in Figure 1, also hybridizes with an RNA of ~1600 nucleotides; this RNA has not been investigated.) As given in Figure 1, the ORF encoded by rbcA is 4503 nucleotides, which is ~700 nucleotides smaller than this RNA. This difference can be accounted for by transcribed sequences on the 5' and 3' side (detected by probes S0.45 and D72, respectively). In addition, the efficient selection (~95%) of this RNA by chromatography on oligo(dT) cellulose (data not shown) implies a poly(A) tail.

Sequence differences among rbcA1, rbcA2, and rbcA3 are conspicuous only at the 5' end of rbcA1. These include a different intron 1 and nine synonymous nucleotide substitutions (in 20 codons) in exon 1. In comparison, exon 1 is identical in rbcA2 and rbcA3, all three exon 2 sequences (94 codons) are identical, and exon 3 sequences exhibit 11 synonymous substitutions by 5 bp in the 3' direction (relative to its position in rbcA2/3), generating agreement with the cDNA and the N-terminal protein sequences. Intron 2 is identical in rbcA1, rbcA2, and rbcA3.

Figure 3. Predicted Protein Product of the rbcA Locus.

The ORF identified in Figure 1 encodes three Rubisco subunits of 485 amino acids each, separated by spacer peptides (underlined). Sequences obtained directly from Rubisco peptides are presented in parentheses below the first (N-terminal) subunit (where two residues seemed equally likely, both are given; X, residue not identified). Peptide sequences in italics represent the PCR primers used to obtain a partial genomic clone. Amino acids given in boldface letters indicate the positions of introns in rbcA, as given in Figures 1 and 2.
Figure 5. DNA Gel Blot Analysis of Symbiodinium DNA.

Lanes M contain DNA size standards obtained by digesting genomic λ clones rbcA and rbcG with various enzymes. Approximate lengths in (A) are, top to bottom, 20 (arrow), 14, 10, 7, 5, 3, 2.3, 1.9, and 1.7 (arrow) kb; in (B), 20, 11.6, and 10 kb. Other lanes contain ~4 ng total zooxanthella DNA digested with BamHI (lanes 1), EcoRI (lanes 2), HindIII (lanes 3), SacI (lanes 4), KpnI (lanes 5), or PvuII (lanes 6).

(A) A blot probed with H1.9 was washed in 0.25 x SSC and exposed to film with an intensifying screen at -80°C for 72 hr.

(B) The same blot in (A) was probed with D72, washed in 0.25 x SSC, and exposed to film with an intensifying screen at -80°C for 98 hr.

tide variation among the three genes, clustered near the 5' end of the locus, focuses attention on exon 1 of rbcA1. Probably, it is incomplete, as diagrammed in Figures 1 and 2, and is preceded by another exon with which it encodes a transit peptide (see Discussion).

rbcA hybridized to multiple restriction fragments of Symbiodinium DNA on gel blots. An example, using the genomic DNA from which rbcA and rbcG were isolated, is presented in Figure 5. The complex hybridization patterns of probe H1.9 (Figure 5A) suggest that rbcA is part of a multigene family. Alternatively, these patterns could represent partial digestion of a single Rubisco locus. The modified bases in Symbiodinium DNA (Blank et al., 1988), which in theory could vary from cell to cell, might possibly render this DNA only "partially digestible." Increased concentrations of restriction enzymes and longer digestion times (with fresh enzyme added at intervals) had no effect on the hybridization patterns (data not shown). Another possibility is that individual clams contain genetically heterogeneous populations of zooxanthellae (see Rowan and Knowlton, 1995), with allelic variation at one Rubisco locus among these "strains" yielding the multiple restriction fragments.

The hybridization of genomic digests to probe D72, which is located 3' to the rbcA genes (see Figure 2), did not support the hypothesis of partial digestion. The predominance of single bands (Figure 5B) of the size predicted from the rbcA restriction map (data not shown) implies that the corresponding DNA was well digested. Minor bands of smaller sizes could represent other loci. Whether these represent different loci within one organism or allelic variation at rbcA among several taxa cannot be determined from these data.

The second hypothesis was tested by analyzing a clonal culture of a zooxanthella obtained from Tridacna squamosa (initial efforts to obtain clonal cultures from T. gigas were not successful). As shown in Figure 6A, genomic DNA from this clone exhibits about as much complexity as do freshly isolated zooxanthellae, demonstrating that multiple rbcA-hybridizing restriction fragments are a feature of one Symbiodinium genome. Moreover, this one alga contains loci similar to both rbcA and rbcG (see below). Probe D72 did not hybridize to genomic DNA from the clonal isolate, probably because it is a different species of Symbiodinium (see below).

As described above, rbcA exhibits characteristics of a nuclear gene. DNA gel blot hybridizations confirmed this suspicion. Quantitative data presented in Figure 7A demonstrate that rbcA-hybridizing sequences are equally abundant in the DNA obtained from highly purified nuclei and from whole cells. If these sequences were nonnuclear, DNA prepared from purified nuclei should have a lower specific signal. The qualitative data presented in Figure 7B demonstrate that the restriction fragment complexity is equivalent in both cases, indicating that all (as opposed to most) rbcA-hybridizing DNA fragments are

Figure 6. DNA Gel Blot Analysis of Total DNA from a Clonal Symbiodinium Culture.

Lanes contain ~3 μg of genomic DNA digested with Xhol (lanes 1), Apal (lanes 2), SalI (lanes 3), or BamHI (lanes 4). Lanes M contain the rbcA probe sequence (~12 pg) on cloned fragments of ~13, 4.8, and 1.9 kb and the rbcG probe sequence (~12 pg) on a cloned fragment of ~8.3 kb. Duplicate gels (one-half of a digest of ~6 pg of genomic DNA was run on each) were blotted and hybridized separately. The extent of cross-hybridization between rbcA and rbcG is shown in lanes M.

(A) One blot was hybridized with the rbcA probe H1.9, washed in 0.25 x SSC, and exposed to film with an intensifying screen at -80°C for 32 hr.

(B) The other blot was hybridized with the rbcG probe S3.2 and processed as given in (A).
fragments in lanes 4 to 6, as compared with lanes 1 to 3, are explained by the better integrity of the nuclear DNA, as seen in (A). Because rbcA and rbcG cross-hybridize weakly (shown by reciprocally probing the cloned loci; Figure 6), the two loci are distinguishable on DNA gel blots. Although rbcA (or rbcA-like) loci were always detected (e.g., Figure 5A), rbcG-related loci were not detected convincingly (weak signals were observed, but these can be attributed to other, e.g., rbcX-like, loci) in Symbiodinium isolated from T. gigas. However, both loci were detected, with comparable efficiency (as determined from cloned rbcA and rbcG DNAs that were included on the blot as hybridization controls), in the clonal Symbiodinium isolate (Figure 6). This demonstrates that both rbcA-like and rbcG-like loci are present in a single Symbiodinium genome. The simple hybridization patterns of rbcG (Figure 6B), compared with the more complex patterns of rbcA hybridization (Figure 6A), imply that the latter represent multiple loci rather than products of partial digestion.

This discrepancy between zooxanthellae freshly isolated from T. gigas (in which only rbcA could be demonstrated) and the zooxanthella cultured from T. squamosa (in which both loci were detected) correlates with a taxonomic difference. By an analysis of small ribosomal subunit RNA (srRNA) genes (data not presented), zooxanthellae obtained from T. gigas were iden-
Figure 8. Sequence of the rbcG Locus and Its Hypothetical Protein Product.

The DNA sequence is presented in uppercase (protein-encoding and flanking DNA) and lowercase (introns) letters. The conceptual translation product is presented below the ORF (the asterisk indicates termination codon).

Figure 9. Schematic Diagram of the rbcG Locus.

This study confirms and extends previous analyses of Rubisco from *Symbiodinium* (Whitney and Yellowlees, 1995; Whitney et al., 1995). Again, it is important to address the possibility that our data originate from contaminants.
The Plant Cell

Zooxanthellae freshly isolated from giant clams appeared unialgal by light microscopy and free of bacterial and animal cell contamination by epifluorescence microscopy after 4',6-diamidino-2-phenylindole (DAPI) staining. Purified zooxanthella nuclei were similarly free of detectable bacteria, and the localization of all rbcA-hybridizing sequences to these nuclei (Figure 7) excludes cytoplasmic bacterial endosymbionts as the source of rbcA. Nuclear bacterial endosymbionts (e.g., Silva, 1978) remain a formal possibility, but none has been reported among several ultrastructural studies of Symbiodinium nuclei (e.g., Blank and Trench, 1985; Blank, 1987). Also, the high abundance and apparent polyadenylation of rbcA-hybridizing RNA and the introns in rbcA and rbcG are characteristics of eukaryotic, not prokaryotic, organisms. Analyses of srRNA genes confirmed that the zooxanthellae we studied were Symbiodinium spp, as expected (Taylor, 1969).

Giant clams conveniently provide large amounts of healthy and exceptionally clean Symbiodinium but not without a drawback. Zooxanthellae are not necessarily clonal within an individual host or taxonomically equivalent between different individuals of the same host species. This has been demonstrated for corals (Rowan and Knowlton, 1995) and giant clams, including T. gigas (R. Rowan, unpublished data). Analyses of srRNA genes assigned zooxanthellae from Tridacna spp to two types within the genus Symbiodinium, but because this classification is undoubtedly superficial (Rowan, 1991), different preparations of genomic DNA or RNA could never be assumed to represent the same (or even one) species of symbiont. This caveat restricted empirical analyses of zooxanthella Rubisco genes to general features.

The general features of Symbiodinium Rubisco, however, are most interesting. Its similarity to prokaryotic form II enzymes (-54 to 65%; see below) reveals an evolutionary origin among the former, like that of the free-living dinoflagellate G. polyedra (Morse et al., 1995). All other known eukaryotic Rubiscos are homologous to the prokaryotic form I enzyme (Martin et al., 1992; Morden et al., 1992). Immunological data indicate that Symbiodinium expresses only form II Rubisco (Whitney and Yellowlees, 1995), and genes encoding form I Rubisco could not be detected (by PCR) in Symbiodinium DNA, despite considerable effort (R. Rowan, unpublished data). The distinction between Rubisco forms I and II is fundamental (reviewed in Tabita, 1988; Hartman and Harpel, 1994). Form I enzymes are hexadecamers of equal numbers of large (L) and small (S) subunits (L2S8), while form II enzymes are heptadecamers of unequal numbers of large (L) and small (S) subunits (LxS8).
enzymes are multimers of one polypeptide (Lₐ) that is homologous to the form L₁ subunit. Forms I and II Rubisco probably diverged from a common ancestor long ago (Andersen and Calon, 1987), before the emergence of (extant) photosynthetic eukaryotes.

Symbiodinium Rubisco is also remarkable in being encoded by a nuclear, multigene family. Formally, rbcA (Figures 1 to 3) demonstrates three genes at one locus, and the analysis of a clonal culture (Figure 6) demonstrated at least two loci per _Symbiodinium_ genome. DNA gel blot hybridizations (e.g., Figures 5 to 7) suggest that the actual number is larger. Other eukaryotic Rubisco L subunits are encoded by a single locus (which may be duplicated) on chloroplast genomes (Palmer, 1985; Newman and Cavalcoli, 1990; Reith, 1995). Preliminary studies on _A. carterae_ (using rbcA as a probe) also imply a nuclear, multigene organization of a form II Rubisco (data not presented; see Whitney and Yellowlees [1995] and Whitney et al. [1995] for related data). Morse et al. (1995) presented indirect evidence that form II Rubisco in _G. polyedra_ is nuclear encoded but did not address gene structure or organization. Thus, a nuclear-encoded form II Rubisco may be characteristic of typical (peridinin-containing) photosynthetic dinoflagellates (Morse et al., 1995).

Amino acid sequence data (Figure 3) and RNA gel blot analyses (Figure 4) imply that rbcA, or similar loci, encodes the predominant Rubisco in _Symbiodinium_ symbiotic with _T. gigas_. The few outright discrepancies between the peptide sequences and the translated rbcA ORF (four of 132 amino acids) and ambiguities in the peptide sequences (seven of 132 amino acids) may represent taxonomic variation (genomic clones and purified protein were obtained from different populations of zooxanthellae), the expression of other Rubisco-encoding loci, or both. At the RNA level, _rbcA_ (and/or similar loci) are abundantly expressed (Figure 4). An estimate of Rubisco in _Symbiodinium_ of 1 to 2% of soluble protein (Whitney and Yellowlees, 1995), based on bound 14C-carboxyarabinitol bisphosphate, may be regarded as a minimum because only activated enzyme binds this inhibitor (Hartman and Harpel, 1994).

Apparently, _rbcA_ encodes a precursor polypeptide. An alternative interpretation, that it encodes a stable polycistronic mRNA, is considered unlikely because such mRNAs are unknown in eukaryotes, whereas polypeptides are known. Notably, these include nuclear-encoded chloroplast proteins in the green alga _Euglena_ (reviewed in Houlnè and Schantz, 1993), namely, proteins of the light-harvesting complexes I (Houlnè and Schantz, 1988) and II (Muchhal and Schwartzbach, 1992), and the Rubisco (form I) S subunits (Chan et al., 1990; Tessier et al., 1995). These _Euglena_ loci encode mature proteins separated by decacystein spacers that exhibit a bipartite structure: the N-terminal half is relatively hydrophobic and rich in Ala; the C-terminal half is relatively polar (Houlnè and Schantz, 1993). The _rbcA_ spacer peptide (underlined in Figure 3) is larger (23 residues) but structurally similar. This motif, which is reminiscent of bacterial signal sequences, may direct the proteolytic processing of the precursor (Schiff et al., 1991; Houlnè and Schantz, 1993).

A form II Rubisco in _G. polyedra_ (Morse et al., 1995) also seems to be encoded as a precursor polypeptide. A partial cDNA sequence (GenBank accession number L41063) encodes a Rubisco ORF preceded by the 41 C-terminal amino acids of that ORF and a 20-residue peptide similar to (~50% identity) the _Symbiodinium_ _rbcA_ "spacer peptide." This sequence could represent slightly more than one-third of a _G. polyedra_ homolog of _rbcA_ (i.e., the C terminus of _rbcA2_, spacer, and all of _rbcA3_); Morse et al. (1995) did not mention the size of Rubisco mRNA in _G. polyedra_.

Assuming that _Symbiodinium_ Rubisco is a chloroplast (stroma) protein, the _rbcA-encoded_ precursor should contain a transit peptide (Keegstra et al., 1989) preceding _rbcA1_. In-frame termination codons and the absence of potential initiation (ATG) codons in the immediate vicinity suggest that part of the hypothetical transit peptide is encoded by a separate, upstream exon. RNA gel blot analyses (Figure 4, lane 3) demonstrated upstream sequences in _rbcA_ mRNA. The predicted peptide sequence preceding _rbcA1_ (VTTRA i—the C terminus of a hypothetical transit peptide) resembles that which precedes _rbcA2/3_ (VARQA i—the C terminus of the spacer peptide); this is consistent with a common mechanism of proteolysis (i) at all three mature N termini. The Rubisco S subunit precursor polypeptide in _Euglena_, for which the transit peptide sequence has been defined, exhibits an analogous pattern of conserved residues (Chan et al., 1990). An _rbcG-encoded_ protein should also contain a transit peptide, and the preceding peptide/amino termini of the two precursors are somewhat similar (rbcA, EDSCVTTRAIL; _rbcG_, EDAVACRTIL).

Transit peptides of chloroplast-targeted proteins in _Euglena_ are longer than those of higher plants, perhaps because _Euglena_ chloroplasts are surrounded by three, as opposed to two, membranes (Chan et al., 1990; Shashidhara et al., 1992). Because this arrangement also exists in most dinoflagellates (Gibbs, 1990), including _Symbiodinium_ (Blank, 1987), a long transit peptide is not unanticipated. One could also speculate that the triple-membrane condition favors the organization of abundant, nuclear-encoded chloroplast proteins into precursor polypeptides (Chan et al., 1990).

A second Rubisco locus, _rbcG_, contains only one Rubisco-encoding sequence. This locus was detected only in _Symbiodinium_ A, which occurs as a minor symbiont in _T. gigas_ (R. Rowan, unpublished data). SrRNA sequence data from _Symbiodinium_ types A and C imply that they are not closely related (Rowan and Powers, 1991b, 1992; Rowan and Knowlton, 1995), so a qualitative genetic difference is not surprising. Lacking a good supply of (pure) _Symbiodinium_ A, we were unable to verify the expression of _rbcG_ by RNA gel blot analysis. Likewise, nuclear DNA from _Symbiodinium_ A has not been tested, but _rbcG_ is probably a nuclear gene, given an exon/intron organization like that of _rbcA_.

Introns in _rbcA_ (and in _rbcG_) apparently represent the first intron sequences reported from dinoflagellates; _rbcA_ intron
sequences have been confirmed from cDNA clones (S.M. Whitney; unpublished data). Like eukaryotic spliceosomal introns in general, these Symbiodinium introns begin with G and end in AG, but the second nucleotide (typically T) is C or A. rbcG introns are hypotheses based on the homology of rbcG and rbcA exons. Both ends of rbcG intron 2 are typical of eukaryotic spliceosomal introns; intron 1 ends are similar (GA; GG). None of the Symbiodinium exon–intron junctions exhibits the unusual base pairing inferred for Euglena polypeptide premRNA (Tessier et al., 1995).

Conceptual translations of the rbcA and rbcG ORFs, a G. polyedra Rubisco cDNA (Morse et al., 1995), and R. rubrum Rubisco (Narang et al., 1984) are compared in Figure 10. Here, 62 of the 64 additional C-terminal residues encoded by rbcG (Figure 8) are removed for simplicity.

The rbcA-encoded protein aligns to R. rubrum Rubisco with one insertion (13 residues), one deletion (two residues), an eight-residue C-terminal extension, and an overall identity of 64.4% (scoring each deleted/inserted residue as one difference and ignoring the C-terminal extension). The two proteins differ most near the (inferred) C terminus, which is a well-recognized feature of Rubiscos (e.g., Andersen and Caton, 1987; Wagner et al., 1988). The rbcA-encoded and G. polyedra proteins are of equal length (485 residues), align with a single one-residue gap (position 32), and are 85.6% identical.

Amino acid residues that should be important to Rubisco function have been identified from sequence comparisons, three-dimensional structural analysis, and in vitro mutagenesis (reviewed in Brändén et al., 1991; Hartman and Harpel, 1994). Seventy-four residues are conserved among both form II and form I (L subunit) molecules (see Figure 7 legend). Only two of these (positions 136 and 429 in the R. rubrum sequence) are different in the rbcA-encoded protein. All 19 residues of the active site (residues within 5 Å of an enzyme-bound, transition-state analog in crystals [Brändén et al., 1991; Hartman and Harpel, 1994]) are conserved. Thus, the protein encoded by rbcA resembles a typical and predictably functional Rubisco.

Rubisco catalyzes both the carboxylation and oxygenation of RuBP (Andrews et al., 1973), at relative rates governed by an intrinsic property of the enzyme (the specificity factor, \(\tau \)), measuring the relative efficiency of carboxylation, temperature, and by the local concentrations of \(\text{CO}_2 \) and \(\text{O}_2 \) (reviewed in Woodrow and Berry, 1988). Bacterial form II Rubiscos have the lowest known values of \(\tau \) (Jordan and Ogren, 1981), but because they are expressed in anoxic environments (Tabita, 1988), their high affinity for \(\text{O}_2 \) does not impede net carbon fixation. In contrast, Symbiodinium is an oxygenic phototroph, living in a sometimes hyperoxic environment (e.g., Crossland and Barnes, 1977; Dykens and Shick, 1982). A typical form II Rubisco, acting at equilibrium with these conditions, would not yield net carbon fixation (cf. Pierce et al., 1989).

Because Symbiodinium does fix \(\text{CO}_2 \) (Muscatine, 1980; Streamer et al., 1993), either its Rubisco's \(\tau \) is dramatically greater than that of the prokaryotic form II enzymes, or oxygenase activity is suppressed in vivo by a \(\text{CO}_2 \)-concentrating mechanism (Hatch, 1971; Beardall, 1989), or both. Unfortu-
Whatever its role (if any), rbcG's bizarre sequence emphasizes the possibilities for diversification within a nuclear multigene family. This may be relevant to physiological issues faced by Symbiodinium. Multiple loci, expressed independently and encoding different catalytic properties, might provide one mechanism for acclimating to a complex environment (e.g., high versus low \(O_2 \) within the host [Crossland and Barnes, 1977; Dykens and Shick, 1982] and symbiotic versus free living [Steele, 1977; Taylor, 1983]). Indeed, bacteria that contain two nonidentical Rubisco genes do (Tabata, 1988) or may (Viale et al., 1990; Stoner and Shively, 1993; Yaguchi et al., 1994) preferentially use one or the other under different conditions. Also, an enhanced capacity for Rubisco evolution might facilitate Symbiodinium's radiation into diverse hosts and habitats (cf. Chang et al., 1983; Rowan and Powers, 1991b; Rowan and Knowlton, 1995). For studies that utilize natural variation to investigate structure-function relationships (e.g., Read and Tabata, 1994), Symbiodinium might provide a wealth of material.

Eukaryotes acquired photosynthesis from prokaryotic endosymbionts that became organelles—the chloroplasts (Palmer, 1993; Whatley, 1993). Rubisco genes encoded, plastome sequence data support the hypothesis that all (studied) chloroplasts derive from one primary eukaryote—cyanobacterium endosymbiosis (see Cavalier-Smith, 1992; Kowallik, 1992; Martin et al., 1992; Morden et al., 1992; Reith and Munholland, 1993; Reith, 1996). Eukaryotic Rubisco apparently derive from two sources: a cyanobacterium (for green algae, land plants, and Cyanophora paradoxa) and an \(\alpha- \) or \(\beta- \) purple bacterium (for nongreen algae). This conflict suggests a single ancestral cyanobacterium with two Rubisco proteins (Martin et al., 1992) or that a purple bacterial Rubisco gene invaded during plastid evolution (Morden et al., 1992). Symbiodinium and G. polyedra (Morse et al., 1995) reveal a third participant and consequently imply an ancestor with three distinct Rubisco genes, an additional gene transfer event, or an independent origin of chloroplasts among the peridinin-containing dinoflagellates.

There are no sequence data from chloroplasts of peridinin-containing dinoflagellates, and any discussion of their origin is speculative (Gibbs, 1990; Cavalier-Smith, 1992; Whatley, 1993). Because Symbiodinium Rubisco is not plastome encoded, the current data do not address this issue directly. Of the few form II Rubiscos that have been characterized, those from the \(\alpha- \) purple bacteria (\(R. \) rubrum and \(R. \) hofobacter \(R. \) hofobacter pseudomonas) \(R. \) pseudomonas) are most similar to those from Symbiodinium (Table 1). Note that \(R. \) pseudomonas also contains a form I Rubisco that groups with those encoded by nongreen algal chloroplasts (Martin et al., 1992; Morden et al., 1992). If parsimony is used for reconstructing the evolution of eukaryotic photosynthesis (Cavalier-Smith, 1992), this observation draws attention to the \(\alpha- \) purple (rather than the \(\beta- \) purple) bacteria as the source of Rubisco in all nongreen algae, including dinoflagellates.

Symbiodinium Rubisco could represent one of many genes that translocated from an evolving plastid genome to the nuclear genome (Palmer, 1993) and then diversified (e.g., Dean et al., 1989). If the chloroplasts of peridinin-containing dinoflagellates represent a reduced eukaryotic endosymbiont (Gibbs, 1990; Whatley, 1993), this might have occurred elsewhere, followed by the further translocation from endosymbiont nucleus to host (dinoflagellate) nucleus. Alternatively, Symbiodinium Rubisco may never have been plastome- (or plastid progenitor-) encoded; it may represent an unrelated gene transfer event. Potential sources would include endosymbiotic \(\alpha- \) purple bacteria (Fenchel and Bernard, 1993) and the \(\alpha- \) purple bacterial ancestor of mitochondria (Cavalier-Smith, 1992). Only one fact is obvious: in acquiring photosynthesis, eukaryotes have also acquired the entire range of diversity in prokaryotic Rubisco.

METHODS

Unless indicated otherwise, enzymes were from New England Biolabs (Beverly, MA) and chemicals were from Sigma. Protocols and recipes for DNA and RNA analysis were as given in Ausubel et al. (1989).

Isolation, Culture, and Identification of Zooxanthellae

Cultured clams (\(T. \) gigas) from Pioneer Bay, Orpheus Island Research Station (Queensland, Australia) were held in outdoor recirculating tanks at James Cook University. Zooxanthellae were isolated from mantle tissue by repeated washing with filtered (0.45 or 0.22 \(\mu \)m) sea water, as described by Whitney and Yellowlees (1995). The absence of contamination by animal tissue or bacteria was confirmed by examining 4',6-diamidino-2-phenylindole (DAPI)-stained sub-samples (Coleman, 1980) by epifluorescence and phase contrast microscopy. Except for those presented in Figure 6, all data were obtained from freshly isolated zooxanthellae.

A clonal culture of Symbiodinium was established from \(T. \) squamosa collected at Davie's Reef, Great Barrier Reef, Australia. Algae were obtained by grinding a small biopsy of mantle tissue in filtered (0.22

Table 1. Percentage Identities among Prokaryotic Form II Rubiscos and the Symbiodinium rbcA-Encoded Protein*

<table>
<thead>
<tr>
<th></th>
<th>Rub</th>
<th>Rsph</th>
<th>Thio</th>
<th>Hyvi</th>
</tr>
</thead>
<tbody>
<tr>
<td>SymA</td>
<td>64.4</td>
<td>64.7</td>
<td>57.9</td>
<td>53.7</td>
</tr>
<tr>
<td>Rub</td>
<td>77.3</td>
<td>69.6</td>
<td>63.7</td>
<td></td>
</tr>
<tr>
<td>Rsph</td>
<td>66.1</td>
<td>61.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thio</td>
<td></td>
<td>58.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Amino acid sequences from Symbiodinium rbcA (SymA; Figure 10), the \(\alpha- \) purple bacteria \(R. \) rubrum (Rub; Narang et al., 1984), and \(R. \) pseudomonas (Rsph; Wagner et al., 1988), the \(\beta- \) purple bacterium \(T. \) denitrificans (Thio; GenBank accession number L37437), and the hydrogen bacterium \(H. \) marinus (Hyvi; Yaguchi et al., 1994) were aligned pairwise, as in Figure 10. The percentage of alignment positions (between the N terminus and the C terminus of the shorter sequence) that were identical in both sequences is given; apparent deletions were scored as nonidentities for the number of positions missing.
were mixed into -20 volumes of prewarmed (60°C) 0.15 M NaCl, 50 mM Tris-HCl, 10 mM EDTA, pH 8.0) after each removal. The nuclei were resuspended in 2 to 3 mL of TE, and washing the sides of the tubes (several times) with ice-cold TCTS (TCT (10 mM Tris, pH 7.2, 5 mM CaCl₂, 5% [v/v] Triton X-100) and with endoproteinase Lys-C (sequencing grade; Promega) and isolated on membranes, using the Probe-Design peptide separation system (Promega), according to the manufacturer's protocols. Peptide sequences were determined using an Applied Biosystems protein sequencer (model no. 477A).

Isolation of DNA from Zooxanthellae

Zooxanthellae were suspended in approximately two volumes of STE (0.15 M NaCl, 10 mM Tris-HCl, and 1 mM EDTA, pH 8.0) and frozen and ground to a fine powder under liquid nitrogen. This was mixed gently into ~15 volumes of preheated (60°C) 5 M guanidine thiocyanate, 50 mM DTT, 50 mM Tris-HCl, 20 mM EDTA, pH 7.5, and 1% (w/v) Sarkosyl. After 30 min at 60°C, 0.25 g of CsCl was added per milliliter and allowed to dissolve, and the lysate was centrifuged at 5900g for 5 min at 20°C to pellet debris. Clarified lysate was layered onto 4-mL cushions of 5.7 M CsCl prepared in STE in SW41 centrifuge tubes (Beckman Instruments, Fullerton, CA), and the filled tubes were centrifuged in a Beckman SW41 rotor at 8000 rpm for 45 min. DNA, banding above the cushion, was recovered and diluted with approximately eight volumes of a 1:1 (w/v) mixture of STE and CsCl. This was centrifuged to density equilibrium in a Beckman Ti 65 rotor at 15°C, and the purified DNA was recovered and dialyzed exhaustively against TE (10 mM Tris-HCl and 0.5 mM EDTA, pH 8.0) at 4°C. Yields averaged ~120 μg of DNA from 10⁶ cells.

For comparison with nuclear DNA (below), whole-cell DNA was prepared as follows. Frozen and powdered zooxanthellae (as given above) were mixed into ~20 volumes of prewarmed (60°C) 0.15 M NaCl, 50 mM EDTA, 10 mM Tris-HCl, pH 7.8, and 1% (w/v) SDS. After 30 min at 60°C, the lysate was placed at 45°C, proteinase K (Promega) was added to a final concentration of 0.25 mg/mL, and the lysate was incubated for 8 hr. Next, NaCl was added to a final concentration of 0.8 M, hexadecytrimethylammonium bromide was added to 1% (w/v), and the lysate was incubated at 65°C for 1 hr with occasional mixing. After sequential extractions with equal volumes of chloroform, phenol-chloroform (1:1 [v/v]), and chloroform again (all at room temperature), nucleic acids were precipitated with ethanol. The precipitate was washed in 70% ethanol, air dried, dissolved in TE, and stored at 4°C. Yields averaged ~80 μg of DNA from 10⁷ cells. Contaminating RNA was removed by digestion with ribonuclease A (Sigma; 50 μg/ml final concentration).

Isolation of Nuclear DNA from Zooxanthellae

Nuclei were obtained from freshly isolated zooxanthellae, using a method adapted from Rizzo and Nooden (1973). All steps were at 0 to 4°C except as indicated.

Approximately 3 x 10⁷ washed cells were suspended in 5 mL of nuclear isolation buffer (NIB; 0.25 M sucrose, 10 mM Tris, pH 7.2, 5 mM CaCl₂, 5% [w/v] Dextran T-40 [Pharmacia, Uppsala, Sweden], and 2.5% [w/v] Ficoll [Type 400]). The slurry was added dropwise to liquid nitrogen in a mortar, ground to a fine powder, and then added to 20 mL ice-cold NIB plus Triton X-100 (0.12% [w/v]). The frozen paste was stirred until thawed and then sonicated at low power two or three times for 10 sec each. Cells were monitored by staining with DAPI and epifluorescence microscopy; liberated nuclei stained intensely and exhibited the typical dinokaryotic morphology (Spector, 1984). Good preparations exhibited one to two free nuclei per remaining intact cell, and further sonication decreased the yield of nuclei.

The sonicate was mixed with 6 mL of 2.2 M sucrose prepared in TCT (10 mM Tris, pH 7.2, 5 mM CaCl₂, and 0.1% [w/v] Triton X-100) and centrifuged at 5900g for 15 min. The pellet (nuclei, cells, and cell debris) was completely resuspended in 18 mL of NIB plus 0.1% [w/v] Triton X-100. One-fourth of this sample was layered onto 9 mL of 2.2 M sucrose in TCT in each of four SW41 centrifuge tubes (Beckman Instruments). The interface between the two sucrose layers was stirred, and the samples were centrifuged in an SW41 rotor at 8000 rpm for 45 min. Nuclear pellets were recovered by removing the overlying gradient in aliquots, washing the sides of the tubes (several times) with ice-cold TCTS (TCT plus 0.15 M NaCl) after each removal. The nuclei were resuspended in 4 mL of NIB and appeared to be pure by epifluorescence (DAPI-stained) and phase contrast microscopy.

Purified nuclei were collected by centrifugation at 5900g for 6 min and resuspended in 5 mL of 0.1 M NaCl and 50 mM EDTA, pH 8.0. At room temperature, SDS was added to 1% (w/v), proteinase K was added to 0.25 mg/mL, and the lysate was incubated at 50°C for 3 to 4 hr. After extracting three times with an equal volume of phenol-chloroform (1:1 [v/v]), nucleic acids were recovered by ethanol precipitation, washed in 70% ethanol, resuspended in 2 to 3 mL of TE, and stored at 4°C.

RNA Isolation

Several methods were used to isolate zooxanthellae RNA, with varying degrees of success: the following protocol consistently yielded relatively undegraded RNA.

Working quickly at room temperature, zooxanthellae were isolated from a single clam with one wash in filtered sea water. The cells were frozen and ground (as above) and blended into ~30 volumes of a 2:1 (v/v) emulsified mixture of LTE buffer (0.4 M LiCl, 50 mM Tris-HCl, 25 mM EDTA, pH 7.5) and phenol (preheated to 50°C), using a tissue homogenizer (Tekmar, Cincinnati, OH) until nonviscous. At room temperature, one-third volume of chloroform was added, and homogenization was repeated. After centrifugation at 5900g for 15 min at room temperature, the aqueous phase was recovered, and the organic
phase/interface was extracted with one-half volume of LTE, which, after recentrifugation, was combined with the first aqueous phase. This was extracted twice more with a 1:1 (v/v) mixture of phenol-chloroform, and nucleic acids were precipitated by adding 2.5 volumes of ethanol. The precipitate was dissolved in ~25 times the original cell volume of HES buffer (20 mM Hepes, 5 mM EDTA, pH 7.2, and 1% [w/v] sarcosyl; pretreated with diethyl pyrocarbonate). This was layered onto 5-mL cushions of 5.7 M CsCl in HE buffer (HES minus sarkosyl) in SW41 centrifuge tubes, and the filled tubes were centrifuged in a Beckman SW41 rotor at 32,000 rpm at 15°C for 24 hr. RNA pellets were collected and resuspended in HES, and this solution was extracted twice with an equal volume of phenol-chloroform (1:1 [v/v]). After that, the RNA was stored as an ethanol precipitate at ~20°C. Yields averaged ~0.4 mg of RNA from 10⁶ cells.

DNA Gel Blot and RNA Gel Blot Hybridizations

DNAs were electrophoresed through 0.7% agarose (Seakem LE; FMC BioProducts, Rockland, ME) gels in TAE buffer, and RNAs were electrophoresed through 1% agarose formaldehyde gels, as described by Ausubel et al. (1989). Nucleic acids were transferred to nylon membranes (Hybond N; Amersham, Arlington Heights, IL) by capillary action. DNA blots were prehybridized and hybridized in aqueous solutions at 65°C; RNA blots were prehybridized and hybridized in 50% formamide solutions at 40°C. Blots were washed in dilutions (see legends to Figures 4 to 7) of SSC (1 x SSC is 0.15 M NaCl, 0.015 M sodium citrate, pH 7.5) or SSPE (1 x SSPE is 0.15 M NaCl, 10 mM sodium phosphate, 1 mM EDTA, pH 7.5) at the temperature of hybridization. RNA length markers (Promega) were visualized by reprobing the blots with 3²P-labeled cDNA that was obtained by random-primed reverse transcription of marker RNA.

Probes S0.45, SP, H1.9, and D72 (Figure 2) were isolated by molecular cloning (confirmed by sequencing) and then obtained as restriction fragments or as PCR-amplified (using universal forward and reverse sequencing primers) inserts. Probe SP was isolated as a PvuII fragment that included 396 bp of vector [pGEM-3Zf (+); Promega]; the corresponding PvuII fragment from nonrecombinant vector DNA did not hybridize to zooxanthella RNA in parallel controls (data not shown). Probe S3.2 (Figure 9) was a SacII restriction fragment from a larger genomic clone. For quantitative DNA gel blot hybridizations (Figure 7), a nuclear-encoded srRNA gene from Symbiodinium (probe 178-6) was used to measure Symbiodinium DNA independently on the membrane; it was obtained by PCR amplification from an M13 clone (Rowan and Knowlton, 1995). Probe DNAs were purified by agarose gel electrophoresis and GeneClean II (Bio 101, Vista, CA), labeled with 3²P-dATP (Amersham) to > 5 x 10⁶ cpm/µg, and used at a concentration of 10⁶ cpm per mL of hybridization solution.

Isolation of a Partial Rubisco Gene by Using the PCR

Sequences of Rubisco peptides (given in Figure 3) were used to design oligonucleotide primers for PCR-amplifying the corresponding gene. Targeted amino acid sequences were PDNEEMK1 and YMLQDDEA; the corresponding primers were 5'-GG(N)GA(CT)AAT-3' and 5'-GCCTCTAGAT-3', respectively, where N represents an equimolar mixture of G, A, T, and C. PCR reactions are as follows: 2 µM each in primer; 200 µM each in dGTP, dATP, dTTP, and dCTP (Boehringer Mannheim); 50 mM KCl; 1.5 mM MgCl₂; 10 mM Tris-HCl, pH 8.3; 0.01% [w/v] gelatin; 0.05% [w/v] Tween 20; and contained ~15 ng of zooxanthella DNA and 2.5 units of AmpliTaq DNA polymerase (Roche Molecular Systems, Branchburg, NJ) in a volume of 40 or 80 µL. Thirty cycles of 94°C for 1 min, 50°C for 1 min, 72°C for 1 min (8 min on the last cycle) yielded a product that was purified using GeneClean II and cloned into the vector pGEM-3Zf (+) (Promega).

Isolation of Genomic Clones

Approximately 4 µg of zooxanthella DNA was digested with various restriction enzymes and analyzed by DNA gel blotting to identify fragments for cloning into λ vectors. Then, ~250 µg of DNA were digested with BamHI and size fractionated in sucrose gradients. Appropriate fragments were identified by agarose gel electrophoresis and blot hybridization, ligated to BamHI-digested EMBl3 vector DNA (Promega), and packaged in vitro (Amersham); the resulting subgenomic library was plated on bacterial strain KW251 (Promega). Plaques (2 x 10⁶) were screened by filter hybridization to the cloned PCR product.

Clone Characterization and DNA Sequencing

DNA was isolated from recombinant bacteriophage grown on lawns of KW251 and mapped with several restriction enzymes, and fragments that hybridized to the PCR clone were identified by DNA gel blotting. These were cloned into either pGEM3zf (+) (Promega) or pBluescript SK— or KS+ (Stratagene) as required and then deleted progressively from one end, using exonuclease III and mung bean nuclease. DNAs were sequenced on both strands primarily from these sets of deletion subclones, using Sequenase kits (United States Biochemical); gaps were filled using additional primers and additional subclones. Sequence data have been submitted to GenBank (accession numbers are U43532 for rbcA and U43533 for rbcG).

ACKNOWLEDGMENTS

We thank Dennis Shaw (John Curtin School of Medical Research, Australian National University) for all peptide sequencing; T.J. Andrews, Catherine Lovelock, and Dennis Shaw for their interest and comments; Chao-lun Chen, David Miller, and Dimitri Odorico for sharing time, enthusiasm, and reagents on many occasions; Paul Levine and G. Jason Smith for hospitality in Pacific Grove, CA; and Andrew Baker for hospitality in Miami, FL. This work was supported by fellowships from the Australian Institute of Marine Science and from the Smithsonian Institution (to R.R.), by an Australian Postgraduate Research Award (to S.M.W.), by a Nevitt Bequest Fellowship (to A.F.), and by grants from James Cook University and the Australian Research Council (to D.Y.).

Received July 18, 1995; accepted January 4, 1996.

REFERENCES

Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family.

R Rowan, S M Whitney, A Fowler and D Yellowlees

Plant Cell 1996;8:539-553

DOI 10.1105/tpc.8.3.539

This information is current as of December 22, 2017