Benzothiadiazole, a Novel Class of Inducers of Systemic Acquired Resistance, Activates Gene Expression and Disease Resistance in Wheat

Jörn Görlich, a Sandra Volrath, a Gertrud Knauf-Beiter, b Georges Hengy, b Uli Beckhove, c Karl-Heinz Kogel, c Michael Oostendorp, b Theo Staub, b Eric Ward, a Helmut Kessmann, b and John Ryals a

a Ciba-Geigy Agricultural Biotechnology Research Unit, Research Triangle Park, North Carolina 27709-2257
b Ciba Limited, Plant Protection Division, CH-4002 Basel, Switzerland
c Institute for Biology III, Technical University of Aachen, D-52074 Aachen, Germany

Systemic acquired resistance is an important component of the disease resistance repertoire of plants. In this study, a novel synthetic chemical, benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH), was shown to induce acquired resistance in wheat. BTH protected wheat systemically against powdery mildew infection by affecting multiple steps in the life cycle of the pathogen. The onset of resistance was accompanied by the induction of a number of newly described wheat chemically induced (WCI) genes, including genes encoding a lipoxygenase and a sulfur-rich protein. With respect to both timing and effectiveness, a tight correlation existed between the onset of resistance and the induction of the WCI genes. Compared with other plant activators, such as 2,6-dichloroisonicotinic acid and salicylic acid, BTH was the most potent inducer of both resistance and gene induction. BTH is being developed commercially as a novel type of plant protection compound that works by inducing the plant's inherent disease resistance mechanisms.

INTRODUCTION

As early as 1901, it was recognized that plants previously infected by a pathogen became resistant to further infection (Beauverie, 1901; Ray, 1901). Over the 30 years that followed these initial reports, many descriptive studies were published that, taken together, suggested the existence of an immune system in plants. In 1933, Chester questioned whether the "acquired immunity of the animal type occur(s) in plants." He concluded that there was substantial evidence supporting such a process and that we "must be awake to the possibility of distinct manifestations of acquired immunity in the plant realm" (Chester, 1933). In retrospect, it is clear that several independent processes were described by Chester, including viral cross-protection, bacterial and fungal antagonism, and a response later known as induced systemic resistance (ISR).

Over the past 60 years, both viral cross-protection and antagonism have received intense study. Cross-protection by attenuated, live viruses has been used successfully to control disease in several agricultural systems (Fulton, 1986). An understanding of the mechanisms underlying cross-protection has led to our ability to exploit this control mechanism by using virus-resistant, genetically engineered plants (Powell Abel et al., 1986; reviewed in Fitchen and Beachy, 1993; Wilson, 1993).

Fungal and bacterial antagonism also have been the focus of many years of research and have evolved into the discipline known as biocontrol (Cook and Baker, 1983). Although biocontrol has been deployed successfully, it is thought that a more effective use will result from a better understanding of the molecular basis for this mechanism of disease control (Lam and Gaffney, 1993).

A third phenomenon summarized by Chester was a plant response we now call ISR (Gianinazzi, 1984; Kloepper et al., 1992). This response is induced by a prior pathogen infection and can be distinguished both from cross-protection, in that the resistance is not specific, and from antagonism, in that an active plant process is involved in the resistance. Although there may be several types of ISR processes in plants, the one that has been studied extensively is systemic acquired resistance (SAR) (Ross, 1961a; Ryals et al., 1994). SAR is induced by pathogens that cause a necrotic reaction that can range from a hypersensitive response (Ross, 1961b) to a necrotic disease lesion (Kuc and Richmond, 1977). The resistance response is characterized by the induction of long-lasting, systemic resistance that is often effective against viral, bacterial, and fungal pathogens. SAR is characterized by the spectrum of both disease resistance and the genes activated in resistant tissue. For example, in tobacco, SAR provides a significant level of protection against tobacco mosaic virus, Pseudomonas syringae pv tabaci, Cercospora nicotianae, Phytophthora parasitica,
Peronospora tabacina, and Erwinia carotovora (Vernooij et al., 1995; Friedrich et al., 1996).

In both tobacco and Arabidopsis, SAR is associated with the coordinate expression of a set of so-called SAR genes. The set of tobacco SAR genes is composed of a number of nonallelic genes that can be broadly classified as encoding pathogenesis-related (PR) proteins (e.g., Ward et al., 1991). The gene families that constitute the SAR genes apparently play an active role in the resistance process because their expression in transgenic plants can impart significant disease resistance (Broglie et al., 1991; Alexander et al., 1993; Liu et al., 1994; Logemann et al., 1994; Jach et al., 1995). In Arabidopsis, the SAR response involves the induction of a subset of the genes expressed in tobacco (Uknes et al., 1992), suggesting that the types of SAR genes expressed may be unique among species. Thus, although there may be several types of ISR responses, SAR can be distinguished by broad-spectrum, systemic resistance and the associated expression of a particular set of genes.

Although little is known about the signal transduction pathway leading to SAR, one step apparently involves the accumulation of salicylic acid (SA). SA levels are elevated at the onset of SAR in cucumber (Métraux et al., 1990), tobacco (Malamy et al., 1990), and Arabidopsis (Uknes et al., 1993). The exogenous application of SA to leaves of tobacco or Arabidopsis induces resistance against the same spectrum of pathogens and the same set of SAR genes, as with pathogen-induced SAR. Transgenic plants expressing a bacterially derived gene that encodes salicylate hydroxylase (nahG), an enzyme that converts SA to catechol, are unable to induce SAR (Gaffney et al., 1993). Taken together, this evidence strongly suggests that SA plays an important role in the signal transduction pathway leading to SAR. However, recent studies indicate that SA is not likely to be the systemically transmitted signal (Vernooij et al., 1994).

Although SAR was first described as a response to pathogen infection, it recently has been found that treatment of plants with the synthetic chemical 2,6-dichloroisonicotinic acid (INA) also can induce SAR (Métraux et al., 1991). In both tobacco and Arabidopsis, INA induces the same spectrum of pathogen resistance and gene expression as does pathogen infection (Ward et al., 1991; Uknes et al., 1992; Lawton et al., 1995; Vernooij et al., 1995). Because INA can restore resistance in tobacco and Arabidopsis plants expressing nahG and because both INA and SA fail to induce SAR in an Arabidopsis mutant blocked in the SAR pathway (Delaney et al., 1995), INA and SA most likely induce SAR via the same signal transduction pathway. INA initially showed promise as a plant protection compound but was insufficiently tolerated by some crops to warrant practical use.

Most of the studies on SAR have been conducted in dicotyledonous plants, and there is less known about SAR in monocots. SAR has been demonstrated in rice, where an inducing infection by P. syringae led to systemic protection against Pyricularia oryzae (Smith and Metraux, 1991), the causative agent of leaf blast, and in barley and wheat, where a prior infection by Erysiphe graminis led to enhanced protection against E. graminis, the causative agent of powdery mildew (Schweizer et al., 1989; Hwang and Heitefuss, 1992). Chemically induced resistance by INA has been described recently in barley (Kogel et al., 1994; Wasternack et al., 1994).

Here, we describe the mode of action in wheat of a novel SAR inducer, benzo[1,2,3]thiadiazole-7-carbothioic acid S-methyl ester, CGA-245 704 (BTH; Schurter et al., 1987). When this compound is sprayed on wheat plants at an early developmental stage, resistance is induced against E. graminis, Puccinia recondita, and Septoria spp. BTH treatment induces the accumulation of transcripts from a number of novel plant genes that also are shown to be induced during pathogen infection. A close relationship exists between the induction of these chemically induced wheat genes and the expression of resistance following SA, INA, or BTH treatment. SAR has been suggested to have great promise as a disease control measure in plants. However, in contrast to viral cross-protection and biocontrol, it has yet to be exploited in agricultural practice. Currently, BTH is being developed as a disease control compound and represents a novel disease control measure that works by inducing the plant's own pathogen defense mechanism. We believe that this new type of plant protection strategy will have a significant impact on agriculture by providing the farmer with a new option for disease control.

RESULTS

Characteristics of BTH-Induced Resistance against Powdery Mildew

Figure 1 shows the structure of BTH compared with those of SA and INA. When applied to leaves, BTH can protect diverse species of dicotyledonous plants, including tobacco and

![Figure 1. Structures of SAR-inducing Compounds.](image-url)
As demonstrated in Figure 2, BTH application to wheat before fungal infection resulted in a long-lasting resistance against powdery mildew caused by *E. g. f. sp tritici*. Plants treated at the two-node stage were effectively protected against powdery mildew for the entire growing season (Figure 2B), in contrast to a field showing severe disease symptoms upon natural inoculation (Figure 2A). Efficient protection also was achieved against infection by the leaf rust fungus *P. recondita* and *Septoria* leaf spot. Treatment of wheat plants with 30 g of BTH per hectare in repeated field trials led to an average of 35% reduction in disease symptoms caused by either of these two wheat pathogens compared with the untreated control plants. BTH treatment of field-grown plants led to an increase in yield of ~18% relative to untreated control plants and compared with a 17% yield increase in plants treated with a combination of Tilt (125 g per hectare) and fenpropidin (500 g per hectare).

BTH treatment affects different steps of the life cycle of *E. g. tritici* on infected wheat plants (Figure 3). Although germination rate and appressorium formation of the fungus were not altered by BTH application, the penetration rate dropped to ~30% compared with control plants. One possible explanation for the unsuccessful fungal penetration attempts is an increase in the formation of effective papillae in BTH-treated tissue, as demonstrated in Figures 4C through 4F; this plant response is usually observed only to a minor extent in the compatible interaction of cereals with powdery mildew (Kogel et al., 1994). In addition, the formation of mature primary haustoria at successful penetration sites was reduced to ~50%, and only 50% of those went on to form secondary haustoria. Both reduced penetration and reduced haustoria formation could be caused partially by hypersensitive reactions of BTH-treated...
Figure 4. BTH-Mediated Resistance Responses.

(A) Infection phenotypes 10 days after inoculation with *E. g. tritici*. Plants were sprayed with BTH (top, 0.5 mM) or, as a control, were not sprayed (bottom).

(B) Autofluorescence of a BTH-mediated hypersensitive reaction of an attacked epidermal cell 48 hr after inoculation (UV light excitation, \(\lambda = 485\) nm).

(C) and (D) Infection sites in control (C) and BTH-treated (D) leaves 48 hr after inoculation.

(E) and (F) Infection sites in control (E) and BTH-treated (F) leaves 72 hr after inoculation.

Formation of mature haustoria and secondary hyphae indicates a compatible interaction in the controls, whereas fungal development is restricted by cell wall appositions (papillae) and/or a hypersensitive reaction after BTH treatment. At later stages, mycelium with secondary haustoria develops into the epidermal layer of control plants. app, appressorium; c, conidia; ca, cytoplasmic aggregation; esh, elongated secondary hyphae; hau, haustorium; n, nucleus; pap, papilla; pgt, primary germ tube. Bars = 2 mm in (A), 25 \(\mu\)m in (B), (E), and (F), and 10 \(\mu\)m in (C) and (D).
Figure 5. Induction of WCI Genes by BTH Treatment.

Two-week-old wheat plants were treated with water (Con) or 0.3 mM BTH (BTH). After 2 days, total RNA was isolated and subjected to gel blot analysis (2 μg per lane). Inserts of the isolated WCI clones were used as probes. Positions of length standards are at left, indicated in kilobases. Ori, origin.

Isolation of BTH-Inducible Genes from Wheat

In dicots, the onset of pathogen- or chemically induced SAR is accompanied by the accumulation of a number of mRNAs encoded by so-called SAR genes. To determine whether BTH-induced resistance in wheat also correlated with enhanced mRNA accumulation, we isolated cDNAs expressed predominantly in BTH-treated leaves. Using differential screening (St. John and Davis, 1979) and differential display (Liang and Pardee, 1992), we isolated five BTH-induced wheat cDNAs referred to as cWCI-1 through cWCI-5 (for wheat chemical induction) that were detected in wheat plants 4 days after BTH treatment. RNA gel blot analysis showed a strong differential accumulation of the corresponding transcripts in BTH-treated and control plants, as shown in Figure 5. Sequence analysis of the WCI clones revealed no homology with previously described SAR genes. Three encode polypeptides with limited homology with known proteins. Characteristics of the cWCI clones are summarized in Table 1. For all clones, except cWCI-2, the detected transcript size is consistent with the length of the cDNA clones, indicating that they are at least near full length (GenBank accession numbers are U32427 through U32431 for WCI-1 through WCI-5).

Characteristics of WCI Clones

The deduced amino acid sequence of cWCI-1 is shown in Figure 6. The longest open reading frame found in cWCI-1 starting with the first ATG encodes a protein of ~37 kD, and the sequence surrounding the proposed start codon fits the consensus for plant initiation codons (Lütcke et al., 1987). The C-terminal half of the postulated polypeptide (residues 192 to 344) has significant homology with two previously described rice proteins of unknown function, salT and COS9. The salT gene encodes a salt and drought stress–associated protein (Claes et al., 1990), and COS9 is expressed specifically in roots (de Pater and Schilperoort, 1992). WCI-1 expression was not detected in organs of untreated wheat plants, including seedlings, roots, leaves, anthers, and pistils (data not shown). The N terminus (amino acids 1 to 191) of WCI-1 has no significant homology with known sequences or peptide motifs. Furthermore, it does not contain sequences similar to known protein targeting signals; thus, cWCI-1 may encode a soluble, cytosolic protein.

Table 1. Characteristics of Isolated WCI cDNA Clones

<table>
<thead>
<tr>
<th>cDNA</th>
<th>Detected Transcript Length (bp)</th>
<th>Properties and Functions of Encoded Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>cWCI-1</td>
<td>~1300</td>
<td>Function unknown; C terminus homolog of rice stress gene</td>
</tr>
<tr>
<td>cWCI-2</td>
<td>~2900</td>
<td>Lipooxygenase (C terminus)</td>
</tr>
<tr>
<td>cWCI-3</td>
<td>~750</td>
<td>Function unknown; cysteine-rich C terminus</td>
</tr>
<tr>
<td>cWCI-4</td>
<td>~1400</td>
<td>Cysteine proteinase</td>
</tr>
<tr>
<td>cWCI-5</td>
<td>~950</td>
<td>Function unknown; no similar proteins known</td>
</tr>
</tbody>
</table>
The cWCI-4 clone may encode a cysteine proteinase, an enzyme class involved in activation and processing of other proteins. The primary structure as well as the deduced amino acid sequence of cWCI-4 are shown in Figure 8. The encoded polypeptide contains a hydrophobic presequence (Figure 8, double underlined) with homology with signal peptides found in protein precursors targeted to the endoplasmic reticulum (von Heijne, 1985), suggesting that WCI-4 is a secreted protein. In addition to this short presequence, WCI-4 contains an N-terminal expansion of \(~\sim 115\) amino acids (Figure 8) also found in the propeptides of oryzains (Watanabe et al., 1991) and aleurain (Holwerda et al., 1990), suggesting a similar two-step processing to generate a mature cysteine proteinase. All active site residues characteristic for cysteine proteinases from plants and animals (Dufour, 1988) are conserved in the proposed mature protein encoded by cWCI-4 (Figure 8). A comparison of \(>30\) known primary amino acid structures of plant proteinases shows a high degree of amino acid conservation surrounding these active residues (Figure 8). The homology of WCI-4 with a gibberellin-regulated thiol protease from wheat (Cejudo et al., 1992) is substantially lower (\(~>20\%\)) than for all other plant cysteine proteinases (between 32 and 46\%), suggesting the existence of at least two different classes of cysteine proteinases in wheat.

The cWCI-5 contains an open reading frame preceded by an in-frame stop codon that encodes a 25-KD polypeptide of unknown function. No homology with known protein sequences was evident. Like WCI-3 and WCI-4, WCI-5 contains an endoplasmic reticulum–targeting signal sequence (residues 1 through 23). The calculated isoelectric point of the proposed mature protein is 4.5, making vacuolar targeting less probable than targeting to the apoplast.

Induction of WCI Genes by Pathogens

At the onset of acquired resistance in tobacco (Ward et al., 1991) and Arabidopsis (Uknes et al., 1992, 1993), coordinately regulated sets of genes are induced both biologically and chemically. A number of these genes represent PR genes, which
also are induced during plant–pathogen interactions (Alexander et al., 1994). An incompatible interaction often is accompanied by a hypersensitive response, the induction of local resistance or SAR, and the rapid induction of PR genes. These genes also can be induced in compatible interactions but at later time points, as shown, for example, for chitinase and lipoxigenase from bean (Meier et al., 1993). To test whether the isolated WCI genes exhibit an expression pattern common to genes that encode PR proteins, we infected wheat plants with the compatible pathogen E. g. tritici. We compared the expression of the WCI genes with the induction of a wheat PR-1 gene encoding a protein with 96% identity to a PR-1a protein from barley (Bryngelsson et al., 1994), because PR-1 is a reliable marker for pathogen infection in different plant species (Ward et al., 1991; Uknes et al., 1993; Mouradov et al., 1994). RNA gel blot analysis presented in Figure 9 shows that PR-1 and WCI-5 are strongly induced 9 days after inoculation with E. g. tritici (Figure 9), whereas WCI-1, WCI-2, and WCI-3 are induced to a lesser extent. Induction of WCI-2 precedes the other genes but peaks along with WCI-1 and WCI-3 by day 12. Expression of WCI-4 was extremely low; its induction at day 12 was very weak and barely detectable above background.

Kinetics of BTH-Induced Resistance and WCI Gene Induction by Different Plant Activators

Because BTH seems not to interact directly with E. g. tritici to inhibit its pathogenic development on wheat plants, it was...
unclear when plant activation must occur relative to pathogen infection for induced resistance to be effective. To address this issue, we treated wheat plants with BTH at different time points before and after pathogen inoculation and monitored the development of disease symptoms. The results presented in Figure 10 show that BTH treatment of wheat plants after infection with *E. g. tritici* had little impact on the progress of the disease. Effective protection could be achieved by pretreatment of the plants 4 to 7 days before pathogen inoculation. These data are consistent with the proposed activity of BTH as a plant activator.

If the WCI genes are suitable biochemical markers for plant activation, their induction by BTH should be correlated with the onset of effective plant protection. We investigated the induction kinetics of WCI-1 through WCI-4 by RNA gel blot analysis, as shown in Figure 11. All four genes showed a rapid induction with elevated expression 6 to 12 hr after application of the chemical. This expression was transient, with elevated levels evident 10 days after BTH treatment. Maximal induction was reached between days 2 and 4 for all genes. Furthermore, the timing of induction of WCI-2 clearly preceded the induction of the other genes as already observed for the induction of the WCI genes by *E. g. tritici*. The maximal gene induction observed several days after application of BTH is consistent with the induction of resistance several days after BTH treatment.

To compare the WCI gene activation capacity of BTH with that of other plant activators, we treated wheat plants with the SAR-inducing compounds SA and INA. RNA dot blot analysis was performed with plant material harvested during a 2-week time period after chemical application (0.3 mM BTH or INA and 3 mM SA); autoradiographic signals were quantified using a PhosphorImager. Data for the time course of WCI gene induction are presented in Figure 12 and Table 2. All three SAR-inducing compounds were activators of the WCI genes, and maximal induction was almost identical for the INA- and BTH-treated tissue, whereas SA showed a substantially lower efficacy (Table 2). Independent of the activating chemical, induction factors were highest for WCI-2, followed by WCI-3 and
WCI-1, giving a qualitatively similar induction pattern for all three plant activators with respect to the different WCI genes.

The time course of gene induction by SA, INA, and BTH showed distinct characteristics for each treatment. Time courses for induction of WCI-1 and WCI-4 are shown in Figure 12; the data for WCI-2 and WCI-3 are similar. Although transcript levels of the different WCI genes were similarly affected by each respective plant activator treatment, each chemical provokes a different induction kinetic. The transient induction by SA was short, reaching its maximum after 1 day. However, after 6 days, transcript levels were already reduced to background. In contrast, INA and BTH treatments led to more prolonged gene induction. For INA, maximal induction levels were reached after 1 to 2 days and started to drop ~4 days after chemical application. BTH caused a slower induction, reaching maximal levels at day 2 and maintained until day 4. Taken together, SA represents the weakest gene activator of the compounds tested, even if applied at high concentrations, and induced a comparably short and transient expression of the WCI genes. Both INA and BTH showed similar qualitative and quantitative activities.

Correlation of WCI Gene Induction and Development of Resistance

Because the ability to activate WCI gene expression differs for the three compounds investigated, we tested whether this difference is correlated with the plant protection effectiveness of SA, INA, and BTH. First, we investigated the induction of the WCI genes 4 days after chemical treatment with increasing concentrations of the plant activators, as shown in Figure 13A. For each treatment, transcript levels of the genes were determined by quantification of RNA blot autoradiographic signals. The expression of each gene was calculated relative to the highest level of expression. To avoid induction of the genes by pathogens, the plants were grown and treated under sterile conditions. All four WCI genes exhibited a strikingly similar

<table>
<thead>
<tr>
<th>Table 2. Maximal Induction Factors of WCI Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>Probe</td>
</tr>
<tr>
<td>WCI-1</td>
</tr>
<tr>
<td>WCI-2</td>
</tr>
<tr>
<td>WCI-3</td>
</tr>
<tr>
<td>WCI-4</td>
</tr>
</tbody>
</table>

*Plants were treated for different times with SA (3 mM), INA (0.3 mM), or BTH (0.3 mM). RNA gel blot analysis was performed for each treatment, and signal strengths were determined for each gene probe. Maximal induction factors were calculated by comparison of the strongest signal for each WCI gene with the signal strength of water-treated control tissue. Maximal induction was reached at day 1 for SA, day 1 or 2 for INA, and day 2 to 4 for BTH. (also see Figure 12).
Figure 13. WCI Gene Induction and Induction of Resistance by Different Plant Activators.

(A) Dose–response curves of WCI genes to plant activator treatment. Wheat plants (2 weeks old) were treated with water or different concentrations of SA, INA, or BTH. RNA was isolated after 4 days and subjected to gel blot analysis by using the cWCI clones as probes (autoradiographs shown as insets; lanes correspond to increasing concentrations of the respective plant activator). Maximal signal strength was determined for each gene by using a PhosphorImager, and relative induction levels were calculated.

(B) Dose–response curves of resistance against powdery mildew by different plant activators. Wheat plants (2 weeks old) were treated with water or different concentrations of SA, INA, or BTH. After 4 days, plants were inoculated with spores of E. g. tritici. Development of disease was scored by determination of infected leaf areas at 14 days (●) or 18 days (○) after inoculation. Infected leaf areas of control plants were set to 100%. Bars represent standard deviations of measurements of 10 plants.
response toward different concentrations of the plant activators (Figure 13A). As previously observed, SA showed the lowest induction, and significant induction was observed only for concentrations >1 mM. Treatment with 10 mM SA resulted in phytotoxic effects on the wheat leaves. In contrast, INA and BTH caused substantial increase of gene expression at concentrations <3 mM. Although maximal induction of the WCI genes was found at INA concentrations of 1 to 3 mM, BTH induced these genes to the same extent at concentrations as low as 0.1 mM.

In Figure 13B, the influence of increasing concentration of activator on the development of powdery mildew disease symptoms is illustrated. Four days after chemical treatment, the plants were inoculated with E. g. tritici, and the infected leaf area was estimated 14 and 18 days later. Disease development was significantly reduced by 0.1 mM BTH, and the infected leaf area was <10% of the control after application of 3 mM (Figure 13B). Significant protection also was achieved by treatment with 1 to 3 mM INA, reducing the infected leaf area to <25% of the control (Figure 13B). Compared with the control plants, treatment with SA had almost no influence on the disease development. Treatments with concentrations of >1 mM led to a slight delay in the progress of fungal growth that was overcome after ~3 weeks. We never observed effective long-term protection of wheat plants by treatment with SA (data not shown). Figure 13 shows a good correlation between the concentration and efficacy of chemical activators, the extent of WCI gene expression, and the development of powdery mildew resistance.

DISCUSSION

In wheat, BTH induces significant resistance against Septoria spp, P. recondita, and E. graminis. A set of genes is induced in BTH-treated wheat plants, and this set constitutes the WCI genes (described here) and a PR-1a homolog from wheat (J. Görlach, S. Volrath, E. Ward, and J. Ryals, unpublished results). The induction of resistance by BTH correlates with the expression of the WCI genes with respect to both timing and dose-response of the chemical.

Because a biologically induced SAR response in wheat has not been previously described, we cannot determine conclusively that BTH induces SAR in wheat. Evidence supporting the fact that BTH induces SAR comes from a separate study in which we show that BTH induces resistance against the same spectrum of pathogens and induces the same spectrum of SAR gene expression as with SAR in tobacco (Friedrich et al., 1996). Furthermore, BTH induces PR-1 gene expression by using the same promoter elements as either TMV or SA and induces PR-1-dependent reporter gene expression in the same cell types as TMV, SA, and INA. Similar to INA, BTH induces SAR in transgenic tobacco that expresses the bacterial salicylate hydroxylase enzyme (Gaffney et al., 1993). Finally, BTH induces SAR in Arabidopsis, and this induction is blocked by a mutation in nrit (for nondiscernible immunity; Delaney et al., 1995) but not in transgenic nahG plants (Lawton et al., 1996). Thus, BTH induces the SAR response in tobacco and Arabidopsis, according to all of the criteria that currently define SAR. Because both BTH and INA induce SAR in dicots, it is likely that the resistance and gene activation response in wheat are SAR-like responses.

BTH is the third well-characterized chemical inducer of SAR along with INA and SA. All three compounds may bind to the same receptor, but this is unclear. All three plant activators share common structural features, including an aromatic ring system with a substituted carboxyl group. This close structural relationship also is reflected in the finding that SA as well as INA bind and inactive a catalase isozyme (Chen et al., 1993; Conrath et al., 1995). However, activator binding and inactivation of catalase do not appear to be involved in SAR signal transduction (Bi et al., 1995; León et al., 1995; Neuenschwander et al., 1995; Summernatter et al., 1995). Nonetheless, the function of BTH and INA as activators of plant defense and gene expression in both dicot and monocot plants indicates a high similarity between receptor specificity and signal transduction in both plant classes.

Although the basic mechanisms of chemically induced SAR seem to be highly conserved, every plant species exhibits specific responses linked to SAR. For example, the set of genes induced in tobacco, Arabidopsis, and wheat during the onset of chemically induced resistance are different; this distinction is reflected also in the nature and spectrum of defense responses against different pathogens in the different plant species. Neither lipoxigenases nor cysteine-rich proteins have been described as SAR genes in tobacco or Arabidopsis, although they are highly induced in wheat. At the same time, the WCI genes as well as the dicot SAR genes represent PR genes. Irrespective of the mechanism of chemically induced SAR, BTH-induced resistance in wheat is manifested at various stages of the plant–pathogen interaction.

BTH-induced genes from wheat comprise both resistance-related and pathogenesis-response genes, although the corresponding cDNAs were isolated from plants in the absence of pathogens. A clear differentiation between pathogenesis response and resistance-related genes is a major problem in the identification of bonafide resistance-conferring genes from pathogen-infected tissue. The use of resistance-inducing compounds such as INA and BTH for the isolation of resistance-related genes provides a tool that facilitates distinction between disease resistance–related genes and pathogenesis-response genes. Furthermore, SAR-inducing compounds provide a unique opportunity to investigate induced resistance mechanisms in plants in the absence of biological model systems, as described in this article. The identification of molecular and biochemical elements involved in systemic resistance signal transduction, such as biological receptors and systemic...
signals, whether common or different in both monocot and dicot systems, may be greatly augmented by the use of this class of plant activators.

A single application of 30 g of BTH per hectare (≈12 g per acre) can protect wheat against powdery mildew in the field for an entire season, combining long-lasting protection with an ecologically desirable, low-application rate. The plants appear unaffected by the treatment, and the yield is indistinguishable from that of plants treated with standard fungicides. Thus, BTH represents a novel commercially attractive disease control compound that activates the plant’s inherent disease control mechanisms. We believe that BTH and analogous compounds will have an impact on future agricultural practices by providing the farmer with new options for disease management in respect to both application rate and frequency.

METHODS

Plant Materials

The wheat cultivar Kanzler was used in all experiments. Plants were grown in growth chambers in soil at 20°C. For experiments under sterile conditions, plants were grown in boxes on water agar including 2.15 g/L Murashige and Skoog microsalts (Gibco BRL).

Pathogen Treatment

_Erysiphe graminis f.sp. tritici _was maintained on 3- to 4-week-old plants. For inoculation, freshly produced conidia from heavily infected plants were used. Infected leaf areas were determined by eye. To determine germination, appressorium formation, penetration, and colony growth, leaf samples were taken 2, 3, and 4 days after inoculation and cleared by the vapor phase exchange method with isopropanol and water (Gerlach, 1969). Cleared segments of 1 cm² were mounted on slides and stained with 0.05% trypan blue in lactophenol-ethanol (1:2) under careful heating. Samples were analyzed by light microscopy.

For observation of haustorium formation, inoculated leaves were embedded in 20% gelatin. After solidification of the gelatin, the leaves were torn off and cleared, and trypan blue staining was performed in a boiling-water bath, as described above. After 24 hr, samples were mounted on slides and analyzed by light microscopy.

Chemical Treatment

Chemicals were applied by spraying suspensions of formulations with wettable powders in distilled water; controls were treated with wettable powder in water.

Molecular Techniques

The basic molecular techniques were performed as described previously (Maniatis et al., 1982; Ausubel et al., 1987).

Isolation of WCI cDNA clones

Wheat plants were treated with 1 mM benzothiadiazole-7-carboxothioic acid S-methyl ester (BTH) WP 25 (wettable powder, 25% active ingredient), and RNA was extracted 4 days after treatment by using a standard phenol extraction–lithium chloride precipitation method (Lagrimini et al., 1987). Poly(A)⁺ RNA was purified by passage over oligo(dT) cellulose columns (Stratagene) and used to create a cDNA library in the bacteriophage vector λ Zap1 (Stratagene), following the manufacturer’s instructions.

For the isolation of WCI-1, WCI-2, and WCI-3, the library was screened with radiolabeled (Feinberg and Vogelstein, 1983) first-strand cDNA from BTH-treated and control plants. Plaques hybridizing preferentially to the cDNA of chemically treated tissue were purified, and cDNA clones were excised in vivo (Stratagene). The cDNA inserts were used to probe total RNA gel blots of control and BTH-treated tissue. Clones showing differential expression were selected, and their sequences were determined by the chain termination method (Sanger et al., 1977) by using fluorescent dyes (Applied Biosystems, Foster City, CA).

For the isolation of WCI-4 and WCI-5, polymerase chain reaction differential display of cDNAs was performed essentially as described previously (Liang and Pardee, 1992). Candidate fragments were used to probe total RNA gel blots of control and BTH-treated tissue. Fragments showing differential expression were selected and used to screen the cDNA library described above. Positive clones were plaque-purified and excised in vivo according to the protocol of the manufacturer (Stratagene), and their sequences were determined.

Analysis of RNA

Total RNA was isolated from leaf tissue by using a standard phenol extraction–lithium chloride precipitation method (Lagrimini et al., 1987). For gel blot analysis, 2 μg of total RNA was separated on formaldehyde agarose gels (Maniatis et al., 1982) and transferred to nylon membranes (GeneScreen Plus, Du Pont–New England Nuclear, Boston, MA). For dot blot analysis, 1 μg of RNA was dotted onto the same membrane as described previously (Görlich et al., 1994). Membranes were hybridized with α-32P-dATP–labeled (Feinberg and Vogelstein, 1983) inserts of the respective cDNA clones, washed under stringent conditions (Church and Gilbert, 1984), and autoradiographed. For determination of transcript levels, signals of the blots were quantified using a PhosphorImager (Molecular Dynamics, Sunnyvale, CA). Induction factors were calculated by dividing the signal strengths by the average signal strengths of the respective controls.

ACKNOWLEDGMENTS

We thank our colleague Dr. Michelle Hunt for critically reading the manuscript, Drs. Kay Lawton and Urs Neuenwander for useful discussions, and other colleagues for their continuing support. J.G. was supported by a postdoctoral fellowship from the Swiss National Science Foundation.

Received October 12, 1995; accepted February 15, 1995.
REFERENCES

Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat.
J Görlach, S Volrath, G Knauf-Beiter, G Hengy, U Beckhove, K H Kogel, M Oostendorp, T Staub, E Ward, H Kessmann and J Ryals

Plant Cell 1996;8:629-643
DOI 10.1105/tpc.8.4.629

This information is current as of July 7, 2017