RESEARCH ARTICLE

Type-B ARABIDOPSIS RESPONSE REGULATORs Specify the Shoot Stem Cell Niche by Dual Regulation of *WUSCHEL*

Wen Jing Meng¹, Zhi Juan Cheng¹, Ya Lin Sang¹, Miao Miao Zhang, Xiao Fei Rong, Zhi Wei Wang, Ying Ying Tang and Xian Sheng Zhang*

State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China.

¹ These authors contributed equally to this work.

*Correspondence to: zhangxs@sdau.edu.cn

Short title: Cytokinin and Auxin Re-specify Stem Cell Niche

One-sentence summary: Type-B ARRs specify the shoot stem cell niche by directly activating *WUS* transcription and repressing the expression of *YUCs* that indirectly promote *WUS* induction.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Xian Sheng Zhang (zhangxs@sdau.edu.cn).

ABSTRACT

Plants are known for their capacity to regenerate the whole body through *de novo* formation of apical meristems from a mass of proliferating cells named callus. Exogenous cytokinin and auxin determine cell fate for the establishment of the stem cell niche, which is the vital step of shoot regeneration, but the underlying mechanisms remain unclear. Here we show that type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs), critical components of cytokinin signaling, activate the transcription of *WUSCHEL (WUS)*, which encodes a key regulator for maintaining stem cells. In parallel, type-B ARRs inhibit auxin accumulation by repressing the expression of *YUCCAs*, which encode a key enzyme for auxin biosynthesis, indirectly promoting *WUS* induction. Both pathways are essential for *de novo* regeneration of the shoot stem cell niche. In addition, the dual regulation of type-B ARRs on *WUS* transcription is required for the maintenance of the shoot apical meristem *in planta*. Thus, our results reveal a long-standing missing link between cytokinin signaling and WUS regulator, and the findings provide critical information for understanding cell fate specification.
INTRODUCTION

Unlike their animal counterparts, the post-embryonic development of higher plants depends on the activity of apical meristems residing at each end of the body (Fletcher et al., 2000; Sena et al., 2009; Moreno-Risueno et al., 2015). In the shoot apical meristem (SAM), pluripotent stem cells reside in a specialized microenvironment termed the stem cell niche, which gives rise to the aerial part of the plant (Aichinger et al., 2012; Zhou et al., 2015). The activity of the shoot stem cell niche is tightly controlled by a feedback loop between the homeodomain transcription factor WUSCHEL (WUS) and the small secreted peptide CLAVATA3 (CLV3) in Arabidopsis (Brand et al., 2000; Schoof et al., 2000). The expression of CLV3 specifically marks the position of stem cells in the central zone (CZ) (Laux et al., 2003). WUS expression precedes that of CLV3 during embryogenesis and defines the organizing center (OC) beneath the CZ (Aichinger et al., 2012; Gaillochet et al., 2015). Once produced in the OC cells, WUS proteins move to the CZ to activate CLV3 expression and stem cell specification (Yadav et al., 2011; Daum et al., 2014). Mutation in WUS leads to differentiation of stem cells and loss of the shoot meristem, indicating that this gene is necessary for establishing and maintaining the stem cell niche (Mayer et al., 1998; Aichinger et al., 2012).

Besides the primary shoot meristem, plants are capable of regenerating shoot meristems during their post-embryonic development, such as axillary and adventitious shoot meristems (Kerstetter et al., 1997; Domagalska et al., 2011; Wang et al., 2014). Six decades ago, Skoog and Miller found that under the induction of exogenous cytokinin and auxin, adventitious shoots could be induced in vitro from a mass of proliferating cells named callus (Skoog et al., 1957; Sugimoto et al., 2010; Iwase et al., 2011). This process is defined as de novo shoot regeneration and provides an ideal system for studying the specification of stem cell niche in plants (Duclercq et al., 2011; Iwase et al., 2017). During shoot regeneration, WUS expression promotes cell fate transition from callus cells to OC, which is essential for the specification of the shoot stem cell niche and the subsequent establishment of the shoot meristem (Duclercq et al., 2011; Aichinger et al., 2012; Ikeuchi et al., 2016).
Previous studies have revealed that cytokinin and auxin play critical roles in shoot regeneration (Ikeuchi et al., 2016). Incubation on medium containing a high cytokinin to auxin ratio activates the expression of WUS in callus and lateral root primordia, and induces the formation of the shoot meristem (Gordon et al., 2007; Chatfield et al., 2013). The expression of Arabidopsis His kinases4 (AHK4), which encodes a cytokinin receptor, precedes and subsequently, overlaps with that of WUS (Gordon et al., 2009). Mutations in type-B ARABIDOPSIS RESPONSE REGULATORS (ARRs), key regulators of primary cytokinin response genes, result in reduced shoot regeneration (Ishida et al., 2008; Hwang et al., 2012; Hill et al., 2013; Zhang et al., 2015). By contrast, overexpressing type-A ARRs encoding negative regulators of cytokinin signaling suppresses shoot formation (Buechel et al., 2010).

Moreover, spatial biosynthesis, polar transport and signaling transduction of auxin are required for shoot regeneration (Gordon et al., 2007; Kareem et al., 2015). Our previous results demonstrated a pattern of auxin and cytokinin essential for shoot meristem induction (Cheng et al., 2013). Cytokinin response signals were progressively restricted to the region of future WUS expression due to the spatiotemporal repression of cytokinin biosynthetic genes ISOPENTENYL-TRANSFERASE (in Arabidopsis, AtIPTs) by AUXIN RESPONSE FACTOR 3 (ARF3). Even though the importance of cytokinin and auxin in shoot regeneration is well known, the underlying molecular mechanisms remain to be elucidated. Particularly, the hormonal regulation of WUS expression is largely unknown.

In this study, we show that cytokinin signaling components type-B ARABIDOPSIS RESPONSE REGULATORS (ARRs) directly activate WUS transcription and repress the expression of auxin biosynthetic genes YUCCAs (YUCs), which in turn indirectly promotes WUS induction. Thus, the dual roles of type-B ARRs on WUS transcription are critical for activating the stem cell program during regeneration. The results of this study provide critical information for understanding the mechanism of cytokinin-regulated shoot regeneration.
RESULTS

ARR1, ARR10 and ARR12 Display Dynamic Expression Patterns during Shoot Regeneration

An Arabidopsis shoot induction system described previously was adopted for the analysis of shoot regeneration in this study (Buechel et al., 2010). Firstly, root explants were pre-treated in an auxin-rich callus induction medium (CIM) to generate callus. The callus was then transferred onto a cytokinin-rich shoot induction medium (SIM) to allow shoot induction. It has been shown that ARR1, ARR10 and ARR12 play primary roles in transducing cytokinin signaling (Ishida et al., 2008; Hill et al., 2013).

Therefore, to investigate how cytokinin regulates WUS expression and shoot regeneration, we first traced the spatiotemporal expression patterns of the three ARR genes using translational reporter lines. ARR signals were hardly detectable at the beginning of SIM incubation. The signals were induced at 2 days on SIM (SIM2), and were enhanced throughout the explant at SIM4. At SIM6, ARR signals were restricted to discrete regions, wherein WUS signals became detectable in a few cells. At SIM8, ARR signals were restricted to the callus protuberance, co-localizing with that of WUS, which marks the regeneration of the stem cell niche. When the shoot meristems were established at SIM12, the signals were located in the central region of the meristem, beneath several layers of the outermost cells and overlapped with that of WUS (Figure 1A). The expression pattern of ARR1 was further confirmed using the transcriptional reporter line and in situ hybridization (Supplemental Figure 1). These results suggest that ARR1, ARR10 and ARR12 function locally in shoot regeneration.

Re-establishment of Shoot Meristem Requires the Function of ARR1, ARR10 and ARR12

Previous studies showed that shoot regeneration capacity was impaired in the arr1 single mutant, as well as its double and triple mutants with arr10 and arr12, indicating that Type-B ARRs, which are key regulators in cytokinin signaling, are required for shoot regeneration in Arabidopsis (Ishida et al., 2008; Hill et al., 2013). To determine the roles of ARR in the regeneration of shoots in callus on SIM, the transcription of ARR1, ARR10 and ARR12 needs to be temporally repressed. For this
purpose, we used artificial microRNAs (am) driven by an ethanol-inducible promoter to silence the transcripts of \(ARR1 \), \(ARR1/10 \), \(ARR1/12 \), \(ARR10/12 \) or \(ARR1/10/12 \) (\(am-ARR1 \), \(am-ARR1/10 \), \(am-ARR1/12 \), \(am-ARR10/12 \), and \(am-ARR1/10/12 \), respectively) (Leibfried et al., 2005; Zhao et al., 2010). The efficiency and specification of these artificial microRNAs were tested by real-time PCR. The results demonstrate that within 12 h of ethanol induction, the transcript levels of the corresponding target \(ARRs \) in different transgenic lines were significantly reduced, whereas those of other type-B \(ARRs \), including \(ARR2 \), \(ARR11 \), \(ARR13 \), \(ARR18 \) and \(ARR21 \) as controls, were not obviously affected (Supplemental Figure 2).

In the wild type, the regenerated shoots in callus were identified at SIM12, and the frequency peaked at SIM22. Under ethanol treatment, regenerated wild-type shoots were observed at SIM14 and reached the peak frequency of regeneration at SIM24 (86.61%) (Supplemental Figure 3), indicating that ethanol has little effect on shoot induction. By contrast, shoot regeneration capacity in the callus expressing artificial microRNAs of \(ARRs \) were obviously impaired. Although the \(am-ARR1 \) lines showed a slightly reduced regeneration frequency, the \(am-ARR1/10 \), \(am-ARR1/12 \) or \(am-ARR10/12 \) lines gave rise to roots, and shoot regeneration was significantly
inhibited. The *am-ARR1/10/12* lines showed a more severe phenotype (Supplemental Figure 3).

To further dissect the function of *ARR1*, *ARR10* and *ARR12*, we silenced their transcription at different stages during shoot formation. As a result, ethanol induction started before restricted *WUS* expression at SIM4 largely abolished shoot regeneration (frequency of shoot regeneration, 33.18%), and instead, roots were regenerated after prolonged incubation (Figures 1B and 1C). However, when ethanol induction was started after the specification of shoot stem cell niche at SIM8 or the establishment of the shoot meristem at SIM12, the percentages of shoot regeneration at SIM8 (77.24%) and SIM12 (81.84%) were similar to those of the non-treated control (85.98%) (Figures 1B and 1C). Once the shoot meristem is determined, low levels of *ARR1*, *ARR10* and *ARR12* transcripts are enough to maintain shoot development.

ARR1, ARR10 and ARR12 Control Shoot Regeneration through Regulating WUS Expression

Overlapping expression of ARRs and *WUS* prompted us to test whether ARRs regulate *WUS* transcription. We first detected the transcript levels of *WUS* during shoot regeneration using RT-qPCR and found an obvious reduction in the *arr1 10*, *arr1 12* and *arr10 12* double mutants (Figure 2A). We further visualized the expression pattern of *WUS* using *gWUS-GFP3* reporter lines (Tucker et al., 2008). In control lines, under ethanol treatment, GFP signals were detected and restricted to the callus protuberance in 27.50% callus at SIM10. At SIM14, the signals were observed in the OC of regenerated shoot meristem at a frequency of 31.77% (Figure 2B). However, in the *am-ARR1/10/12* transgenic lines, *gWUS-GFP3* signals diminished and shoot meristem formation was abolished in some examined callus. At SIM10 and SIM14, GFP signals were detected in 13.75% and 17.44% of the callus, respectively, but the signals were largely reduced compared with those in control lines. These results indicate that *ARR1*, *ARR10* and *ARR12* positively regulate the transcription of *WUS* (Figure 2B).

To confirm the regulatory roles of ARRs on *WUS* during shoot regeneration, we performed a 24-hour ethanol induction at day 0, 4, 8 and 12 of SIM incubation,
respectively, and visualized the expression pattern of $gWUS$ signals. The results show that restricted WUS expression was visible at SIM8 and SIM12 in the non-treated wild type, ethanol-treated wild type, and non-treated $am-ARR1/10/12$ line (Figure 3); however, silencing of $ARR1$, $ARR10$ and $ARR12$ obviously reduced WUS expression signals (Figure 3). Additionally, RT-qPCR analysis confirmed that a 24-hour ethanol treatment significantly reduced the transcript levels of WUS at SIM8 and SIM12 in the $am-ARR1/10/12$ lines, respectively (Figure 2C).

We next examined whether the regulation of ARRs on WUS is involved in shoot regeneration. For this purpose, we overexpressed WUS in the $arr1 12$ double mutant and examined the regenerative capacity. All of the examined $Pro35S:WUS$ lines reached 100% of shoot regeneration, indicating that WUS expression is sufficient to rescue the shoot regeneration defects caused by ARR mutations (Figure 4). These results together demonstrate that $ARR1$, $ARR10$ and $ARR12$ are involved in shoot regeneration through regulating WUS expression.

ARR1, ARR10 and ARR12 Directly Activate WUS Transcription
To test whether the activation of ARRs on *WUS* transcription is direct, we performed Chromatin immunoprecipitation (ChIP) analyses. As a result, three fragments (WUS-2, WUS-3 and WUS-4) containing B-type ARR binding element sites in the *WUS* promoter were strongly enriched at SIM4, SIM8 and SIM12 (Figure 5A). The direct binding of ARRs to the ChIP-positive fragments was examined by electrophoretic mobility shift assays (EMSAs). Two oligonucleotides designated as “Probe a” (-414 to -473 bp upstream of the ATG start codon) and “Probe b” (-559 to -611 bp upstream of the ATG start codon) were biotin-labeled. All three ARRs produced clear band shifts with both of these probes (Figure 5B). Moreover, the addition of excess unlabeled competitor probes effectively reduced the amount of shifted bands, indicating that ARR proteins bind specifically to the tested probes. Direct binding was also confirmed by yeast one-hybrid analyses (Figure 5C).

Moreover, the effects of ARR1, ARR10 or ARR12 on the expression of *LUC* driven by *WUS* promoter were examined in a protoplast transient expression system. The results showed that co-expression of *ARR1, ARR10* or *ARR12* significantly enhanced *ProWUS:LUC* activity (Figure 5D). The activation of *WUS* transcription by ARR1, ARR10 and ARR12 was further confirmed using a transient expression assay in tobacco leaves (Supplemental Figure 4). These results indicate that ARR1, ARR10 and ARR12 activate *WUS* transcription by directly binding to its promoter region.

We next determined whether the ARR binding elements on the *WUS* promoter contribute to transcriptional regulation during shoot regeneration. For this purpose, we specifically disrupted ARR binding elements within the ChIP-positive fragments.
(Figure 5A), and examined the transcriptional activation of ARR through a transient expression assay in tobacco leaves. We generated ProWUSm1 by mutating the two most important base pairs (GATC/T to CTTC/T) in all of the ARR binding elements of WUS-2, WUS-3 and WUS-4 (SaKai et al., 2000). As a result, the transcriptional activation was significantly reduced (Supplemental Figures 5A and S5B). WUS-3
(-706 to -396 bp upstream of the ATG start codon) largely overlapped with the previously identified region (-726 to -541 bp upstream of the ATG start codon), which is necessary for the proper expression of *WUS* (Bäurle and Laux, 2005) (Supplemental Figures 5A and 5B). We thus generated the ProWUSm2 promoter by mutating the two base pairs of ARR binding elements in WUS-3, which demonstrated
a similar result with that of ProWUSm1 (Supplemental Figures 5A and 5B). The results indicate that ARR binding elements within WUS-3 played primary roles in ARR-mediated WUS transcription.

We then asked whether a one base-pair mutation is sufficient to disrupt ARR-mediated activation. To confirm this, we generated ProWUSm3 (GATC/T to
CATC/T) and ProWUSm₁₂ (GATC/T to GTTC/T) by mutating one base pair of
ARR-binding elements in WUS-3, respectively. The transcriptional activation by ARR
was partially repressed (Supplemental Figures 5A and 5B).

The ProWUSm₂ promoter was then used to drive a GFP reporter, and the signals
were examined at different stages of SIM incubation. Compared with those of
ProWUS:GFP₃ and in situ hybridization, ProWUSm₂:GFP₃ signals were obviously
reduced during the SIM incubation (Supplemental Figures 5C and 5D). These results
indicate that the ARR binding elements are required for proper expression of WUS
during SAM formation.

The Integrated Functions of ARRs Confer the Proper Expression Patterns of
YUC₁ and YUC₄

Our previous work showed that during shoot regeneration, auxin response
signals could not be detected in the WUS-expressing region, where cytokinin
responses are strong (Cheng et al., 2013). We thus speculated that auxin accumulation
was repressed by cytokinin signaling in this region. To test this hypothesis, we
examined whether ARRs regulate the expression of YUCCA (YUC) genes, which
encode key enzymes for auxin biosynthesis. Because our previous results showed that
YUC₁ and YUC₄ play essential roles in shoot regeneration, we detected the
expression patterns of both of these genes (Cheng et al., 2013). Indeed, the transcript
levels of YUC₁ and YUC₄, but not YUC₂ and YUC₆, were obviously increased in
arr₁₁₀, arr₁₁₂ and arr₁₀₁₂ double mutants as compared to those in their wild-type
counterparts (Figure 6A). Therefore, ARR₁, ARR₁₀ and ARR₁₂ negatively regulate
YUC₁ and YUC₄ transcription.

To further dissect the regulation of ARRs on YUC genes, we examined the
expression patterns of YUC₄ and ARR₁₀ using double reporter lines during shoot
regeneration (Figure 6B). At the early stages of SIM incubation (SIM₂ and SIM₄), the
distribution patterns of YUC₄ were similar to those of ARR₁₀, although its signals
were weaker than those of ARR₁₀. When ARR₁₀ signals were regionalized, YUC₄
signals were substantially decreased in the ARR-expressing regions at SIM₆, and
were further reduced at SIM₈. At SIM₁₂, YUC₄ signals were undetectable in the
The center region of the shoot meristem where *ARR10* was expressed.

We further compared the spatiotemporal expression patterns of a *ProYUC4:YUC4-GFP* reporter in the wild type and *arr10 12* double mutant explants. In the wild-type explants, GFP signals were progressively confined to a pattern apical and peripheral to the *WUS*-accumulating region, which was initiated in the region with weak GFP signals at SIM6. When a shoot meristem was formed, YUC4 signals were switched to the region apical to the *WUS*-expressing area, as previously described (Figure 6C) (Cheng et al., 2013). However, much stronger signals in the *arr10 12* double mutant were observed at 0 and 4 days on SIM than in the wild type (Figure 6C). At SIM8, the expression pattern of *YUC4* was abolished, and *WUS* expression was not detected. Instead, the GFP signals were still evenly distributed in the explants and accumulated in the root apical meristem (Figure 6C). At SIM12, strong GFP signals accumulated in the root meristem (Figure 6C). The expression patterns of *YUC4* in the *arr10 12* double mutant were further confirmed by *ProYUC4:GUS* expression analysis (Supplemental Figure 6A). Expression of *YUC1*
in the *arr1 10* and *arr1 12* double mutants also showed similar patterns to those of
YUC4 in the *arr10 12* double mutant (Supplemental Figure 6B). Finally, we examined
the auxin response in the *arr10 12* double mutant using *ProDR5:GFP*. As expected,
GFP signals in the *arr10 12* double mutant transgenically expressing *ProDR5:GFP*
exhibited patterns similar to those of *YUC1* and *YUC4* (Figure 6C). Thus, the results
suggest that ARR1, ARR10 and ARR12 repress the expression of *YUC1* and *YUC4* in
the region destined for OC specification, thus restricting the expression of *YUC1* and
YUC4 to the surrounding region.

Spatiotemporal Expression of *YUC1* and *YUC4* Mediated by Type-B ARRs is
Required for Shoot Regeneration

To further test whether the spatiotemporal regulation of *YUC* expression is
required for shoot regeneration, we analyzed the shoot regeneration capacity in the
dominant gain-of-function *yuc1* mutant (*yuc1D*) and the *YUC4*-overexpressing
transgenic lines (*YUC4ox*) (Zhao et al., 2001; Cheng et al., 2006). The *yuc1D* and
YUC4ox explants exhibited phenotypes similar to those of the double mutants of *arr1*,
arr10 and *arr12*, i.e., attenuated shoot regeneration and enhanced adventitious root
formation (Figure 7A and 7B). Consistently, the transcript levels of *WUS* were
markedly reduced in transgenic lines overexpressing *YUC1* or *YUC4* (Supplemental
Figure 7A). Furthermore, we detected auxin responses of *YUC4ox* using a
ProDR5:GFP reporter. The GFP signals were spread into the whole explant,
suggesting that the locally synthesized auxin functions in a cell-autonomous manner
(Supplemental Figure 8).

We examined the shoot regeneration capacity of the *yuc 1 4* double mutant, and
the results showed that explants of the *yuc 1 4* double mutant gave rise to filaceous
structures and reduced shoots (Supplemental Figures 9A and 9B). The *arr10 12 yuc1*
4 quadruple mutant exhibited similar phenotypes to that of the *yuc1 4* double mutant
(Supplemental Figures 9A and 9B). Comparison of the transcript levels of *ARR10* and
ARR12 in the wild type, and those in *yuc1D* and *YUC4ox* using RT-qPCR did not
reveal any obvious differences (Supplemental Figure 9C). These results suggest that
YUCs act downstream of the type-B *ARRs*.
Next, we investigated whether suppression of YUCs in the expressing domains of type-B ARRs is essential for shoot regeneration. We generated transgenic lines expressing $YUC4$ driven by the promoter of $ARR10$, and examined their capacity for shoot regeneration. Compared with those of the wild-type explants, the frequencies of shoot regeneration in $ProARR10:YUC4$ lines were obviously decreased (Figures 7A and 7C), indicating that repression of $YUC4$ in the type-B ARRs expression domain is essential for shoot regeneration. We further determined whether repressing YUC expression in the WUS-expressing region is critical for shoot regeneration. To this end, we introduced transgenic lines expressing $YUC4$ under the WUS promoter. Shoot regeneration in $ProvUS:YUC4$ lines was severely reduced, demonstrating the importance of repressing YUC expression in the de novo formation of OC (Figures 7A and 7C). The results together indicate that spatial localization of YUC is important for shoot meristem formation.

To test whether $YUC1$ and $YUC4$ expression is directly regulated by ARRs, we performed ChIP assays. The results showed that $ARR1$, $ARR10$ and $ARR12$ associate with the $YUC4$-1 and $YUC4$-2 fragments of the $YUC4$ promoter, while $ARR1$ also associates with the $YUC1$-5 region of the $YUC1$ promoter in callus tissue at SIM4, SIM8 and SIM12 (Figure 8A; Supplemental Figures 7B and 7C). EMSA and yeast one-hybrid analyses revealed direct binding of the ARRs to the fragments of the $YUC4$ promoter (Figures 8B and 8C). Furthermore, we generated a construct containing the GFP gene driven by the mutated $YUC4$ promoter ($ProYUC4m$) within
which two base pairs of the binding elements by ARR1, ARR10 and ARR12 were mutated (GATC/T to CTTC/T). The ProYUC4m:GFP signal in the wild-type background showed similar patterns to those of ProYUC4:GFP in the arr10 12 double mutant (Figure 8D). Together, these results indicate that ARR1, ARR10 and ARR12 redundantly occupy YUC promoters and suppress their expression, and thus prevent the auxin-mediated repression of WUS transcription.

Finally, we analyzed whether direct binding of ARRs on YUC promoters
mediated shoot regeneration. For this purpose, we expressed *YUC4* under the mutated
YUC4 promoter (*ProYUC4m*) and examined the regeneration capacity of these
transgenic lines. As a result, misexpression of *YUC4* by these promoters led to an
obvious decrease in shoot regeneration percentage (Supplemental Figure 10). The
results indicate that the binding elements of ARRs on *YUC* promoters are critical for
shoot regeneration.

ARRs Regulate SAM Maintenance through Regulating *WUS* Transcription In
Planta

To validate the above-described regulatory relationship between *WUS* and these
hormone-related genes *in planta*, we performed experiments to visualize their
expression patterns in the SAM. We first visualized the distribution patterns of ARR1,
ARR10 and ARR12 in the SAM, and found their signals to be located in the central
region of the SAM, overlapping with the OC marked by *WUS* signals (Supplemental
Figure 11A). *WUS* expression was then detected in the *arr1 10 12* mutant and the
am-ARR1/10/12 transgenic lines using the *gWUS-GFP* reporter. GFP signals were
obviously reduced in the *arr1 10 12* mutant compared with those in the wild type
(Figures 9A and 9C). In the *am-ARR1/10/12* lines, ethanol treatment for 24 hours
significantly down-regulated *WUS* expression signals compared with the control lines
(Figures 9B and 9C). ChIP assays revealed that ARR1, ARR10 and ARR12 associate
with the *WUS* promoter, respectively (Figure 9D). Thus, three ARRs are required for
maintaining *WUS* expression in the OC through their direct activation of *WUS*
transcription.

We next investigated the effect of *ARR1, ARR10* and *ARR12* on the expression of
YUC4 by visualizing *ProYUC4:YUC4-GFP* and *ProWUS:dsRED* reporters (Figure
10A). Signals derived from *ProYUC4:YUC-GFP* were located in the L1 cell layer of
the wild-type SAM, but expanded to the central region of the SAM in both the *arr10
12* and *arr1 10 12* mutants, and also, the signals were much stronger in the *arr1 10 12*
triple mutant than in the *arr10 12* double mutant (Figure 10A). By contrast, the
WUS-expressing region was decreased in the *arr10 12* double mutant, and was even
less in the *arr1 10 12* triple mutant, compared with those in the wild type (Figure
 Furthermore, ChIP analysis revealed a direct regulation of ARR1, ARR10 and ARR12 on \(YUC4 \) expression (Supplemental Figures 11B and 11C), suggesting that the three ARRs repress \(YUC \) expression and thus auxin accumulation in the OC, which indirectly promotes \(WUS \) transcription therein.

We questioned whether the regulation of \(WUS \) by the ARRs exerts roles in SAM maintenance. The SAM of the \(arr1 10 12 \) triple mutant, \(yuc1D \), \(YUC4ox \) and \(ProARR10:YUC4 \) lines were examined. Consistent with the reduced transcript levels of \(WUS \), the SAM size of these lines was decreased compared with that of the wild type (Figures 10B and 10C, Supplemental Figure 12). The \(arr1 10 12 \) triple mutant exhibited the greatest magnitude of reduction (Figures 10B and 10C). Further analyses demonstrated that the decrease in SAM size resulted from a reduced cell number (Figure 10C). We thus suggest that defects in \(ARR1 \), \(ARR10 \) and \(ARR12 \) can not activate \(WUS \) transcription. Furthermore, these defects caused ectopic expression of \(YUC1 \) or \(YUC4 \) in the OC, which might lead to auxin accumulation and subsequent \(WUS \) suppression. This fits well with the recent finding that \(WUS \) acts as a positive regulator of cell division, and inducible down-regulation of \(WUS \) expression resulted in a progressive decrease in SAM size (Yadav et al., 2010). Thus, these results suggest
that ARR1, ARR10, and ARR12 mediate SAM maintenance through their regulation of *WUS* transcription.
DISCUSSION

ARR1, ARR10 and ARR12-regulated WUS Expression Plays Critical Roles in Shoot Regeneration

Double and triple mutants of ARR1, ARR10 and ARR12 could not generate shoots under in vitro culture owing to cytokinin insensitivity (Hill et al., 2013; Ishida et al., 2008). Here, we used ethanol-induced artificial microRNAs to silence the transcription of ARR1, ARR10 and ARR12 at different stages of shoot formation. As a result, the capacity of shoot regeneration was largely reduced in these lines, confirming that these ARRs control shoot regeneration (Figure 1B; Supplemental Figure 3).

A previous study demonstrated that shoot regeneration capacity was largely reduced in the wus-1 mutant (Gordon et al., 2007). To confirm the role of WUS in shoot regeneration, we transferred the WUS gene driven by Pro35S promoter to the arr1 12 mutant, and found that overexpressing WUS is sufficient to rescue the shoot regeneration phenotype of the arr1 12 mutant (Figure 4), suggesting that WUS functions in downstream of cytokinin signaling and plays a critical role in shoot regeneration. Since WUS expression is regulated by ARR1, ARR10 and ARR12, we propose that these ARRs control shoot regeneration through regulation of WUS expression.

Cytokinin has been shown to regulate the cell cycle in both cell culture and in planta (Riou-Khamlichi et al., 1999), and it might be involved in shoot formation by controlling cell proliferation. Here, our results indicate that inducible silencing of ARR1, ARR10 and ARR12 significantly reduced shoot regeneration, although callus could be observed (Figure 1B). Overexpressing WUS rescued the defects of the arr mutants (Figure 4). Thus, ARRs-mediated WUS expression plays a critical role in shoot regeneration, which may be independent of cell proliferation of callus.

In addition, our results indicated that WUS expression was firstly induced in a few callus cells and then marked the regeneration of the OC. However, this expression pattern is different from previous findings, which showed that WUS is broadly expressed across the callus at the early stage of SIM incubation, but restricted to the
center of the shoot meristem later (Gordon et al., 2007; Kareem et al., 2015). To confirm this result, we performed in situ hybridization, and found that the two reporters we used mimicked the expression pattern of WUS endogenous mRNA (Figure 1A; Supplemental Figures 5C and 5D).

ARR-Mediated WUS Transcription Requires RE1- or RE2-Specific Factors

Cytokinin signaling has been suggested to be a positional cue for WUS expression (Gordon et al., 2009). However, the regulatory pathways between cytokinin receptors and WUS remain to be elucidated. Our results revealed a shortcut, namely that ARR1, ARR10 and ARR12 could directly bind to the WUS promoter and activate its transcription (Figure 5). A previous study analyzed the regulatory roles of different regions in the WUS promoter, and revealed that the sequences between -726 and -541 bp upstream of the start codon (-600 to -415 bp upstream of the putative transcription start site) are necessary for WUS expression in the stem cell niche of the inflorescence meristem (Bäurle and Laux, 2005). Here, we identified a ChIP-positive fragment (WUS-3, -706 to -396 bp upstream of the ATG start codon) in the WUS promoter which largely overlapped with this necessary sequence (Figure 5A). Mutating the ARR binding elements within WUS-3 significantly reduced the transcriptional activation by ARR (Supplemental Figures 5A and 5B), indicating the important roles of this fragment in recruiting ARR proteins for transcriptional regulation.

Furthermore, tetrameric tandem repeats of a 57-bp regulatory region (-586 to -529 bp upstream of the putative transcription start site) were shown to be sufficient for providing the correct spatial WUS expression pattern in the stem cell niche, and this activity depends on two adjacent short motifs, RE1 and RE2 (Bäurle and Laux, 2005). According to the model envisioned by Bäurle and Laux, we propose a regulatory mechanism for ARR-mediated WUS transcription. In the OC or competent callus cells, ARR1, ARR10 or ARR12 protein is recruited by ARR binding elements within the WUS-3 fragment. Other elements located in WUS-2 and WUS-4 are also involved in the interaction between ARR protein and WUS promoter, but play redundant and minor roles. This is supported by the result that mutating ARR binding
elements in WUS-3 or in all three ChIP-positive fragments reduced ARR-mediated activation to similar extents (Supplemental Figures 5A and 5B). Once ARR binds the promoter, it activates \textit{WUS} transcription by interacting with the previously proposed RE1- or RE2- specific transcription factors. This hypothesis is supported by the fact that ARRs could interact with other proteins via the transactivation domain (Zhang et al., 2015).

\textbf{ARR1, ARR10 and ARR12 Are Bi-functional Transcription Factors and Play Dual Roles in Regulating \textit{WUS} Expression}

Type-B ARRs have been demonstrated to be transcriptional activators, which directly bind to the promoter region of target genes, such as type-A ARRs, and positively regulate their expression (Hwang et al., 2012). Recent evidence revealed that ARR1 also directly regulates genes whose transcription was repressed by cytokinin (Zhang et al., 2013). Our data show that ARR1, ARR10 and ARR12 exhibit dual functions in transcription regulation, and activate the transcription of \textit{WUS} and repress that of \textit{YUCs} within the same cell niche. \textit{WUS} has previously been shown to have a similar dual function (Ikeda et al., 2009). It is possible that different partner proteins interacting with ARRs confer their functions as either transcriptional activators or repressors. Identifying and analyzing these partner proteins will facilitate our understanding of transcription factors with dual roles.

The \textit{de novo} establishment of shoot meristem depends on the initiation and maintenance of \textit{WUS} transcription. After the formation of shoot meristem either from regeneration or embryonic development, proper \textit{WUS} expression is required to maintain the stem cell niche and subsequently SAM size. Based on their bi-function in transcriptional regulation, ARR1, ARR10 and ARR12 directly activated \textit{WUS} transcription and indirectly promoted its expression by repressing auxin accumulation. Therefore, the dual regulatory roles of ARR1, ARR10 and ARR12 on \textit{WUS} were critical for the \textit{de novo} establishment of stem cell niche \textit{in vitro}, and were required for its maintenance \textit{in planta}.

\textbf{A Proposed Regulatory Network for \textit{De Novo} Specification of Shoot Stem Cell Niche Controlled by Cytokinin and Auxin}
Pioneer studies demonstrated that cooperation of exogenous cytokinin and auxin induces plant regeneration, which lays an important foundation for wide applications in plant biotechnology and agricultural practices (Duclercq et al., 2011; Ikeuchi et al., 2016). However, the mechanisms underlying this regeneration process are poorly understood. Combining our present results with previous findings (Cheng et al., 2013), we propose a regulatory network for shoot regeneration. During shoot induction, cytokinin signaling in the potential WUS-expressing region directly represses the transcription of YUC1 and YUC4 through type-B ARRs, thus making this region a cytokinin signaling-rich (CSR) one (Figure 11). Meanwhile, ARF3 represses the expression of AtIPTs in the surrounding region, giving rise to an auxin signaling-rich (ASR) region in a radial pattern encircling the CSR region. Thus, antagonistic regulation between auxin and cytokinin generates the mutually exclusive distribution pattern of the two hormones. In the CSR region, cytokinin functions through ARR1, ARR10 and ARR12 activating the transcription of WUS, and ensures a high cytokinin/auxin response ratio in this region by suppressing YUC expression to maintain WUS expression therein (Figure 11). This is supported by a recent study showing that WUS expression is negatively regulated by auxin signaling (Liu et al., 2014). The stable WUS transcription switches callus cells into OC cells, which in turn initiate stem cells through a non-cell-autonomous manner (Yadav et al., 2011; Chatfield et al., 2013; Daum et al., 2014).

Our results demonstrate that WUS signals were co-localized with those of ARR1, ARR10 and ARR12 after the onset of its transcription. The expression regions of ARR1, ARR10 and ARR12 were always larger than the WUS expression region (Figure 1). It is likely that other factors function together with the three ARRs to restrict WUS expression spatially.

It has been shown that root regeneration triggers a program similar to that of embryonic root formation (Efroni et al., 2016). However, the mechanisms underlying shoot regeneration are, at least in part, different from those of embryonic SAM establishment. During shoot regeneration, high levels of cytokinin response signals were observed in the progenitor cells of shoot meristem before the onset of WUS
expression. By contrast, the signals of the cytokinin response remain undetectable in the prospective SAM until the heart stage of the embryo, which is much later than the initiation of \textit{WUS} expression (Müller and Sheen, 2008; Cheng et al., 2013; Zurcher et al., 2013). It is likely that cytokinin signaling acts upstream of \textit{WUS} during shoot regeneration, and downstream of \textit{WUS} in embryonic SAM establishment. Consistently, our results showed that ARR1, ARR10 and ARR12 were critical for shoot regeneration but were not required for SAM formation \textit{in planta}.

The \textit{de novo} shoot regeneration may share similar mechanisms with axillary meristem formation. Both types of meristems are established in the region with low auxin and enriched cytokinin signaling. \textit{ARR1} has been shown to be involved in axillary meristem initiation (Wang et al., 2014). Our results demonstrated a substantial reduction of axillary meristems in the \textit{arr1 10 12} triple mutant (Supplemental Figure 13). It is possible that ARR1, ARR10 and ARR12 regulate axillary meristem
formation through direct activation of \textit{WUS} expression.

\textbf{Mutually Exclusive Distribution Pattern of Cytokinin and Auxin Signaling Is Important for Meristem Specification}

Our data show that mutually the exclusive distribution pattern of cytokinin and auxin signaling was critical for the specification of the stem cell niche during shoot regeneration. Evidence accumulated in the past few years suggests that the distinct distribution of these two hormones plays pivotal roles in tissue patterning (Chandler and Werr, 2015; Schaller et al., 2015). For instance, in the vascular tissue of Arabidopsis roots, a central localized xylem axis bisects the intervening procambium cells and thus forms a bisymmetric structure (Nieminen et al., 2015; De Rybel et al., 2016). Cytokinin signaling peaks in two bisymmetric procambial cell files, where it regulates the localization of PINFORMED (PIN) auxin efflux carriers, and creates an auxin maximum in the adjacent xylem axis. Auxin signaling in turn promotes the expression of the negative regulator of cytokinin signaling \textit{AHP6} by ARF5 (Besnard et al., 2014). This mutually exclusive pattern of cytokinin and auxin is required for the specification of the bisymmetric vascular pattern (Bishopp et al., 2011).

Moreover, when the hypophysis cell asymmetrically divides and forms the upper lens-shaped cell and the larger basal cell, the cytokinin response of the hypophysis is maintained in the former, whereas the auxin response is detected in the latter (Müller and Sheen, 2008). As a result, the lens-shaped cell gives rise to the QC and the basal cell generates the columella (Laux et al., 2004). During the initiation of the axillary meristem, an auxin minimum region in the leaf axil is established through PIN-dependent auxin efflux (Wang et al., 2014). In this region, cytokinin perception and signaling are activated to promote the formation of the functional shoot meristem, possibly through inducing \textit{WUS} expression.

Thus, the mutually exclusive distribution of cytokinin and auxin is widely involved in the specification and function of plant meristems, which might result from the fundamental roles of these two hormones in determining cell fate (Chandler and Werr, 2015). Our study reveals that an interaction between cytokinin and auxin controls shoot regeneration through activating \textit{WUS} expression, suggesting that
inducing the expression of key regulatory genes is critical for cell fate determination.

MATERIALS

Plant Materials and Growth Conditions

Arabidopsis ecotype Col-0 was used as the wild type in this study except when stated otherwise. Surface-sterilized seeds were plated on half-strength Murashige and Skoog medium containing 0.8% (w/v) agar and 1% (w/v) sucrose (pH 5.7). After vernalization at 4°C for four days, seedlings were grown under sterile conditions or in soil at 20°C–22°C, with 16 h of white light (100 μmol m⁻² s⁻¹) and 8 h of dark. The ProWUS:dsRED reporter lines were kindly provided by Dr. Elliot M. Meyerowitz (California Institute of Technology) (Gordon et al., 2007). The gWUS-GFP3 reporter lines were kindly provided by Dr. Thomas Laux (University of Freiburg) (Zhang et al., 2013). The arr1 10 double (CS39990), arr1 12 double (CS6981), arr10 12 double (CS39991) and arr1 10 12 triple (CS39992) mutants were obtained from the Arabidopsis Biological Resource Center. The yuc1D and yuc1 4 double mutants were kindly provided by Dr. Yunde Zhao (University of California at San Diego) (Cheng et al., 2006; Zhao et al., 2001). The arr10 12 yuc1 4 quadruple mutant was obtained by crossing arr10 12 with yuc1 4 double mutants.

Plasmid Construction and Plant Transformation

Artificial microRNAs targeting ARR1, ARR1/10, ARR10/12 and ARR1/10/12 were designed using the WMD3-Designer and were cloned into an ethanol-inducible vector (Leibfried et al., 2005; Zhao et al., 2010) to produce the ProAlcA:am-ARR1, ProAlcA:am-ARR1/10, ProAlcA:am-ARR1/12, ProAlcA:am-ARR10/12 and ProAlcA:am-ARR1/10/12 constructs. A genomic fragment of 4,597 bp containing a 2,527-bp sequence upstream of the ATG start codon and the coding region without the stop codon of ARR1 was amplified by PCR from Arabidopsis genomic DNA with the primers pARR1-genomic-F, pARR1-genomic-R, ARR1-cDNA-F, and ARR1-cDNA-R, and was recombined into pROKII-GFP to generate the ProARR1:ARR1-GFP expression vector. A 4,953-bp genomic fragment containing a 2,479-bp region upstream of the ATG start codon and the coding region without the
stop codon of *ARR10* was PCR-amplified using the primers ARR10-genomic-F and ARR10-genomic-R and was recombined into pMDC107 to generate the *ProARR10:ARR10-GFP* expression vector. The same genomic fragment was amplified with the primers pARR10-mCherry-F and pARR10-mCherry-R, and was inserted into a p2300-H2B-mCherry vector digested with SacI and KpnI to generate the *ProARR10:ARR10-mCherry* vector. A genomic fragment of 5,127 bp containing a 2,658-bp sequence upstream of the ATG start codon and the coding region without the stop codon of *ARR12* was amplified by PCR with the primers ARR12-genomic-F and ARR12-genomic-R and was recombined into pMDC107 to generate the *ProARR12:ARR12-GFP* expression vector.

For *Pro35S:WUS*, the 879-bp coding sequence of *WUS* was amplified by PCR with the primers WUS-CDS-F and WUS-CDS-R and then inserted into the pROKII-GFP vector. For the *ProARR10:YUC4* construct, a fragment of 2,479-bp upstream of the ATG start codon of *ARR10* was amplified from the Arabidopsis genomic DNA with primers pARR10-P-F and pARR10-P-R, and inserted into the pCambia1300 vector digested with SacI and BamHI to produce pCambia1300-pARR10. The full coding sequence of *YUC4* was amplified by RT-PCR using total RNA isolated from Arabidopsis seedlings with primers YUC4-cDNA-F and YUC4-cDNA-R, and inserted into pCambia1300-pARR10 digested with NcoI and SalI. All of the expression vectors described above were transformed into the Col-0 wild type using the floral dip method. *ProYUC4:YUC4-GFP* was described previously (Cheng et al., 2013). *ProYUC4:YUC4-GFP* was transformed into wild-type plants and these plants were then crossed with *ProWUS:dsRED* lines to generate *ProYUC4:YUC4-GFP; ProWUS:dsRED* reporter lines, which were then crossed with the *arr10 12* double mutants. The *ProDR5:GFP* and *ProWUS:DsRed* reporter lines were described previously (Cheng et al., 2013) and were crossed with *arr10 12* double mutants. The *ProARR10:ARR10-mCherry* lines were crossed with the *ProYUC4:YUC4-GFP* lines to generate the double reporter lines.

A 2,484-bp fragment upstream of the *WUS* start codon was amplified by PCR from Arabidopsis genomic DNA (ecotype Ws) with primers pWUS-F and pWUS-R
and was introduced into the pGK-3EGFP vector to generate ProWUS:GFP3. Mutated WUS promoters were synthesized by Shanghai Sangon Biotechnology Incorporation (Shanghai, China). For ProWUSm1, two base pairs of the ARR binding elements in the ChIP-positive fragments WUS-2, WUS-3 and WUS-4 were replaced (GATC/T changed to CTTC/T). For ProWUSm2, two base pairs of the ARR binding elements in WUS-3 were replaced (GATC/T changed to CTTC/T). For ProWUSm3, one base pair of the ARR binding elements in WUS-3 were replaced (GATC/T changed to CATC/T).

For ProWUSm4, one base pair of the ARR binding elements in WUS-3 were replaced (GATC/T changed to GTTC/T). ProWUSm2 was then cloned into the pGK-3EGFP vector to generate ProWUSm2:GFP3. ProWUSm2:GFP3 and ProWUS:GFP3 were examined in the Ws ecotype background. The ProYUC4m promoter was synthesized by replacing two base pairs of the ARR binding elements in YUC4-1 and YUC4-2 ChIP-positive fragments (GATC/T changed to CTTC/T). ProYUC4m was then cloned into pMDC107 to generate ProYUC4m:GFP. The coding sequence of YUC4 was amplified by PCR using total RNA from Arabidopsis seedlings with primers YUC4-cDNA-F and YUC4-cDNA-R, and was introduced into a pROKII-GFP vector to generate pROKII-YUC4-GFP. ProYUC4m was amplified by PCR with primers pYUC4-F and pYUC4-R, and was introduced into pROKII-YUC4-GFP to generate the ProYUC4m:YUC4 vector. To analyze the auxin response, ProDR5:GFP reporter lines were crossed with YUC4ox transgenic lines. To analyze the auxin response, ProDR5:GFP reporter lines were crossed with YUC4ox transgenic lines. The sequences of all primers are listed in Supplemental Data Set 1. The sequences of mutated promoters are listed in Supplemental Data Set 2.

The ProARR1:GUS transgenic line was obtained from the Arabidopsis Biological Resource Center (Mason et al., 2004). The Pro35S:YUC4 (YUC4ox), ProYUC1:GUS and ProYUC4:GUS transgenic lines were kindly provided by Dr. Yun de Zhao (University of California at San Diego) (Cheng et al., 2006). The ProYUC1:GUS transgenic lines were crossed with the arr1 10 and arr1 12 double mutants, respectively. The ProYUC4:GUS lines were crossed with the arr10 12 double mutants.
Shoot Regeneration Analysis

Plants were grown for 15 days under sterile conditions as described above. Root explants were cut at 5–10 mm from the root tip and incubated on callus induction medium (CIM), containing Gamborg’s B5 medium with 2% glucose, 0.5 g/l MES, 0.2 μM kinetin, 2.2 μM 2,4-dichlorophenoxyacetic acid (2,4-D), and 0.8% agar. After 6 days in culture on CIM, explants were transferred onto shoot induction medium (SIM) containing Gamborg’s B5 medium with 2% glucose, 0.5 g/L MES, 0.9 μM 3-indoleacetic acid, and 5 μM 2-isopentenyladenine for shoot induction.

For ethanol induction, ethanol was added to the SIM to a final concentration of 0.05% (v/v). For analyses of the frequencies of shoot regeneration, three biological replicates were performed. For each replicate, root explants from more than 100 individuals were used. Different plants were used between distinct replicates. For transgenic plants, separate lines were used in each replicate. Regenerated shoots were defined as described previously (Daimon et al., 2003). The tissues containing a meristem surrounded by three or more leaves or leaf primordia with a phyllotactic pattern were defined as a shoot.

For analyses of stage-specific silencing of ARR5, explants were transferred to SIM media containing 0.05% (v/v) ethanol at 0, 4, 8 or 12 days of SIM incubation, and the shoot regeneration percentages were determined.

The 24-hour ethanol induction was performed on gWUS-GFP3 transgenic explants at day 0, 4, 8 and 12 of SIM incubation. The gWUS-GFP3 signals were then visualized using confocal microscopy as described below.

For the complementary experiment, Pro35S:WUS was transformed into the arr112 double mutant to generate the Pro35S:WUS arr1 12 lines. The shoot regeneration frequency was then determined as above.

Confocal Microscopy

Callus at different days of incubation in SIM that was approximately 5 to 8 mm in diameter was selected using an Olympus SZX-16 stereomicroscope (Olympus) and cut into sections of 1 to 2 mm thick along the longitudinal axis. The sections were then observed, and fluorescent images were captured using a Leica TCS SP5II
confocal laser scanning microscope (Leica) with a 40× oil objective. Multitracking in line-scan mode and a 488/561 main dichroic filter were used to image GFP and dsRED together (Heisler et al., 2005). A 561-nm laser line and a 600–640-nm band-pass filter were used for dsRED, and a 488-nm laser line and a 505–550-nm band pass filter were used for GFP.

Histochemical GUS Assay

Histochemical GUS assays were performed on transgenic Arabidopsis line expressing *ProARR1:GUS* in the wild type, lines expressing *ProYUC1:GUS* in wild-type, *arr1 10* and *arr1 12* double mutants, and lines expressing *ProYUC4:GUS* in the wild type and *arr10 12* double mutants. For GUS staining, callus at different days on SIM were harvested and fixed in 90% acetone on ice for 15 min. Each callus was then transferred into GUS staining buffer containing 50 mM NaPO₄ (pH 7.2) 2 mM X-gluc (Sigma-Aldrich), 0.5 mM K₃Fe(CN)₆, and 0.5 mM K₄Fe(CN)₆, vacuum infiltrated and incubated at 37°C overnight. The stained callus was photographed using an Olympus SZX-16 stereomicroscope (Olympus) equipped with an Olympus DP72 digital camera (Olympus). For anatomical analysis, stained callus was dehydrated for 1 hour for each in 70, 80, 90 and 100% ethanol and embedded in paraffin (Sigma). Embedded callus samples were then sectioned at 8 μm, and paraffin was removed by incubation in xylene. Finally, the sections were stained with 0.2% ruthenium red and photographed using an Olympus BX-51 microscope (Olympus) equipped with an Olympus DP71 digital camera (Olympus).

RT-qPCR

Total RNA was extracted using the TRI Reagent (Sigma-Aldrich). The full-length cDNA was generated with the RevertAid First Strand cDNA Synthesis Kit (Thermo). RT-qPCR was carried out on a Chromo4 real-time PCR system (Bio-Rad) using SuperReal PreMix Plus (Tiangen) with gene-specific primers. The transcript levels of the genes in each sample were normalized to that of the housekeeping gene *TUBULIN2*, and the values shown are the mean ± s.d. of three biological replicates. For Figures 2A, 2C and 6A, callus tissues at different days of SIM incubation were used. Tissues derived from different plants were used in distinct replicates. For
Supplemental Figures 2 and 9C, inflorescences of 35-day-old seedlings were used. Tissues used between distinct replicates were generated from different plants. The primers are listed in Supplemental Data Set 1.

In Situ Hybridization

Callus at different days on SIM was collected and fixed in FAA (10% formaldehyde, 5% acetic acid, and 50% alcohol) at 4°C overnight. The fixed tissues were embedded in Paraplast (Sigma-Aldrich) after dehydration, and were then sectioned at 8 μm.

RNA probes were synthesized and labeled *in vitro*, and the hybridized signals were detected as previously described (Zhao et al., 2006). Photographs were taken using an Olympus BX-51 microscope (Olympus) equipped with an Olympus DP71 digital camera (Olympus).

ChIP Assay

ChIP assays were performed using an EZ-ChIP Kit (Upstate) according to the manufacturer’s protocol. Callus tissues incubated for various days on SIM (Figures 5 and 8; Supplemental Figure S7) or shoots (without leaves and cotyledons) from seedlings at 10 days after germination (Fig 9; Supplemental Figure S11) of the *ProARR1:ARR1-GFP*, *ProARR10:ARR10-GFP* and *ProARR12:ARR12-GFP* transgenic lines were used for ChIP analyses. For each replicate, 0.3 g of tissue was harvested and cross-linked with 1% (v/v) formaldehyde in GB buffer (0.4 M sucrose, 10 mM Tris, pH 8.0, 1 mM EDTA, pH 8.0, and 1 mM phenylmethanesulfonyl fluoride) under a vacuum for 10 min at room temperature. The crosslinking was quenched with 125 mM glycine. The chromatin was then resuspended and sheared by sonication to produce DNA fragments of between 0.2 and 1 kb. The chromatin complexes were immunoprecipitated with anti-GFP antibody (Sigma-Aldrich, lot number: PM1008202, catalog number: SAB5300167). Finally, the precipitated DNA fragments were analyzed using RT-qPCR as described previously (Cheng et al., 2014; Zhou et al., 2009). Tissues derived from different plants were used in distinct biological replicates. The ARR binding elements have been described previously (SaKai et al., 2000; Bhargava A et al., 2013; Kieber JJ et al., 2014). The primers used for qPCR analyses are listed in Supplemental Data Set 1, and the sequences of
fragments are listed in Supplemental Data Set 2.

EMSA

The DNA fragments encoding DNA binding domains of ARR1, ARR10 and ARR12 (aa 236–299 for ARR1, aa 183–235 for ARR10, aa 195–248 for ARR12) were inserted into pGEX-4T-1 vector digested with BamHI and XhoI, which was then expressed in the *Escherichia coli* BL21 (DE3) cell line to produce GST-tagged ARR protein. The recombinant fusion protein was purified using Glutathione Sepharose 4B (GE Healthcare) following the manufacturer’s instructions. Annealed double-stranded oligonucleotides containing putative binding sequences were labeled with biotin. The LightShift Chemiluminescent EMSA Kit (Thermo) was used for binding reactions. The labeled complex was detected using a Chemiluminescent Nucleic Acid Detection Module (Thermo). The competition experiments were carried out with different amounts of non-labeled oligonucleotides. The mutated competitors in Figures 5B and 8B were generated by replacing two base pairs in the ARR binding elements (GATC/T to CTTC/T). Primers and oligonucleotide probe sequences are listed in Supplemental Data Sets 1 and 2.

Yeast One-Hybrid

Yeast one-hybrid assays were performed as previously described (Cheng et al., 2013). *WUS*-3 (-394 to -566 bp upstream of the ATG start codon) and *YUC4*-2 (-742 to -913 bp upstream of the ATG start codon) fragments were cloned into the pAbAi vector digested with HindIII and KpnI, creating *WUS*-3-AbAi and *YUC4*-2-AbAi. *WUS*-3-AbAi, *YUC4*-2-AbAi, and p53-AbAi (positive control, Clontech Laboratories) were linearized by digestion with BbsI prior to transformation of the yeast strain Y1H Gold. The full-length cDNA of *ARR1*, *ARR10* and *ARR12* was isolated and cloned into the pDEST-GADT7 activation domain (AD) vector, creating the pAD-ARR1, pAD-ARR10 and pAD-ARR12 plasmid. The p53 sequence was cloned into the pDEST-GADT7 activation domain (AD) vector, creating the pAD-p53 positive control. The pAD-ARR1, pAD-ARR10 and pAD-ARR12 or empty pDEST-GADT7 vector as negative control was subsequently transformed into the yeast strain containing the *WUS*-3-AbAi or *YUC4*-2-AbAi constructs. Activation of the yeast was
observed after 3 days on selection plates (synthetic dextrose [SD]/-Leu) containing 600 ng mL\(^{-1}\) aureobasidin A (AbA). The primers are described in Supplemental Data Set 1. Oligonucleotide sequences are listed in Supplemental Data Set 2.

Transient Expression Assay

The coding sequences of *ARR1*, *ARR10* and *ARR12* were cloned into the pGreenII 62-SK vector downstream of the *Pro35S* promoter and were used as effectors. A 2,479-bp fragment upstream of the start codon of *WUS* or mutated *WUS* promoters were introduced into the pGreenII 0800-LUC vector upstream of *LUC* and these constructs were used as the reporters. The pGreenII 0800-LUC vector harboring the renilla luciferase (REN) gene under the control of the *Pro35S* promoter was used as the internal control. Protoplast transient expression assays were performed as previously described (Song et al., 2014). Mesophyll protoplast preparation and transfection were performed according to a previously reported method (Yoo et al., 2007). For transient expression assays in tobacco leaves, leaves of *N. benthamiana* were transiently transformed and examined as previously described (Guo et al., 2015). Biological replicates represent the results of three independent assays. For transient expression in tobacco leaves, three leaves from different plants were used in one replicate. Protoplasts used in the three replicates were obtained from different plants.

Histological Analyses of the SAM

The SAMs from wild-type and *arr1 10 12* mutant seedlings at 14 days after germination were used for *gWUS-GFP* expression analyses. The intensity of fluorescence was measured using ImageJ software (Pablo Córdoba et al., 2015). The shoot meristem width was measured at the maximum width between leaf primordia. ImageJ software was used for measuring shoot meristem width and counting cell number (Maes et al., 2008; Vidal et al., 2010).

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome Initiative under the following accession numbers: *ARR1* (At3g16857), *ARR2* (At4g16110), *ARR10* (At4g31920), *ARR11* (At1g67710), *ARR12* (At2g25180), *ARR13*
(AT2G27070), ARR18 (At5g58080), ARR21 (AT5G07210), WUS (At2g17950), YUC1 (AT4G32540), YUC2 (AT4G13260), YUC4 (AT5G11320), YUC6 (AT5G25620).

SUPPLEMENTAL MATERIALS

Supplemental Figure 1. Expression Patterns of ARR1 during Shoot Regeneration.

Supplemental Figure 2. The Effectiveness of Artificial MicroRNAs against ARR1, ARR10 and ARR12.

Supplemental Figure 3. Defects in ARR1, ARR10 and ARR12 Attenuate Shoot Regeneration.

Supplemental Figure 4. Transient Expressing ARR1, ARR10 or ARR12 Activates WUS Transcription.

Supplemental Figure 5. Mutating the ARR Binding Elements in WUS Promoter Region Reduced ARR-mediated WUS Transcription.

Supplemental Figure 6. Mutations in ARRs Enhanced the Signals of the pYUC1:GUS and pYUC4:GUS Reporters.

Supplemental Figure 7. ARR1 Binds the Promoter of YUC1 and Regulates Its Transcription.

Supplemental Figure 8. Expression Patterns of ProDR5:GFP were Disturbed in YUC4ox Lines.

Supplemental Figure 9. YUCs Act Downstream of ARRs.

Supplemental Figure 10. Expression of YUC4 under Mutated YUC4 Promoter Reduced Shoot Regeneration.

Supplemental Figure 11. ARR1, ARR10 and ARR12 Bind the Promoters of YUCs and Regulate Their Expression in the SAM.

Supplemental Figure 12. Phenotypes of pARR10:YUC4 Transgenic Lines.

Supplemental Figure 13. ARR1, ARR10 and ARR12 are Involved in Axillary Meristem Initiation.

Supplemental Data Set 1. Primers Used in This Study.

Supplemental Data Set 2. Oligo Sequences Used in the Yeast One-hybrid, EMSA
and ChIP Assays.

AUTHOR CONTRIBUTIONS

X.S.Z., Z.J.C., and Y.L.S. conceived and designed the experiments. W.J.M. and Z.J.C. performed the experiments and data analysis with the help of M.M.Z. X.F.R. Z.W.W and Y.Y.T. in the laboratory of X.S.Z. X.S.Z. and Y.L.S. wrote the manuscript. X.S.Z supervised the project.

ACKNOWLEDGMENTS

We thank ABRC for providing the plant materials. We thank Dr. E. M. Meyerowitz (California Institute of Technology), Dr. T. Laux (University of Freiburg) and Dr. Y. Zhao (University of California at San Diego) for providing materials. This work was supported by the National Natural Sciences Foundation of China (91217308, 90917015 and 31570281).

Type-B ARABIDOPSIS RESPONSE REGULATORS Is Critical to the Specification of Shoot Stem Cell Niche by Dual Regulation of WUSCHEL
Wenjing Meng, Zhi Juan Cheng, Ya Lin Sang, Miao Miao Zhang, Xiao Fei Rong, Zhi Wei Wang, Ying Ying Tang and Xian Sheng Zhang
Plant Cell; originally published online June 2, 2017;
DOI 10.1105/tpc.16.00640

This information is current as of January 3, 2021