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Figure 7. QTL and phenotypic effect sizes of GWAS hits at the dr/ loci in the NAM population.
(A to D) Potential QTL were identified around the dr/7 and dri2 loci (green line and arrow in the center of each plot) on
chromosomes 1 and 9, respectively, using previously published maize GWAS data. Individual points show GWAS hits:
dark blue dots indicate higher quality hits that have an RMIP =0.05; light-blue dots indicate lower quality hits that are

less well resolved. The red lines show the cumulative RMIP in 1-Mb sliding windows. Inset, whole chromosomal view

with arrows at the drl1 or dri2 locus.

(A) drl1 leaf width; (B) drl1 Boxcox-transformed leaf angle; (C) dri2 average internode length across the whole plant; (D)
drl2 Boxcox-transformed leaf angle.

(E to H) The effect size for each SNP located in drl/1 or dri2 was determined across all HapMap2 GWAS models that
included it (out of 100 bootstrapped iterations). The sample size for the violin plots is the number of times a variant was
selected as part of the model, and the violins represent the distributions for different variants in each dr/ gene. The
distributions are shown for individual SNPs at left. The large, rightmost bimodal distribution in each violin plot shows the
effects for all SNPs across all models, i.e., all variants selected combined across all 100 model iterations. The plot is
bimodal because SNPs with effect sizes near 0 are rarely selected by the model, effectively filtering them out.

(E) and (F) drl1 shows one of the largest effect sizes for leaf width (approximately +2 mm) (E) and small effect sizes for
leaf angle (Boxcox transformed) (F).

(G) and (H) drl2 shows strong effects for average internode length (approximately -1.5 mm) (G) and small effect sizes
for leaf angle (Boxcox transformed) (H).
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