
In this appendix, we derive expressions for the three resistances given in Equation (2).  With 

measured values of the phloem flow speed ܷ, this allows us to determine the hydrostatic pressure 

difference Δ݌ required to drive the flow given in Eq. (1). Characteristic values of the parameters 

used in the calculations can be found in Table 1 while the calculated values of the hydrostatic 

pressure is given in Table 2.  

Our starting point is the relation between the hydrostatic pressure drop Δ݌ between source and 

sink and the volumetric flow rate ܳ given in Eq. (1): 

  Δ݌ ൌ ܴܳ.     (A1) 

Here, the volumetric flux ܳ ൌ  ܣ is the product of the flow velocity ܷ and cross-section area ܣܷ

and ܴ is the hydraulic resistance of the phloem translocation pathway.  Assuming that the 

translocation pathway consists of ܰ identical sieve tube elements, ܯof which contain a SEOR1 

agglomeration, we write the resistance as 

  ܴ ൌ ܴܰ௟௨௠௘௡ ൅ ሺܰ െ 1ሻܴ௣௟௔௧௘ ൅     (A2)	௣௟௨௚.ܴܯ

Here, we take into account three major components: a) the sieve tube lumen including 

organelles, ܴ௟௨௠௘௡, b) the sieve plate, ܴ௣௟௔௧௘, and c) the SEOR1 agglomerations, ܴ௣௟௨௚. An 

expression for each of the terms in Equation (A2) is derived in the following sections, and 

numerical values are given in Table 2. 

1. Resistance of the sieve tube lumen 

Assuming that the cell lumen is well approximated by a cylindrical tube, we have for the 

resistance of the lumen ܴ௟௨௠௘௡ (Bruus, 2008)      

 ܴ௟௨௠௘௡ ൌ
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ర .   (A3) 

Here, ߟ is the viscosity, ܮ௧ is the length of the sieve tube element and ܽ௘ is the radius of the part 

of the tube which is open to flow. Due to the abundance of sieve tube constituents at the margins, 

we estimate that the effective radius  ܽ௘ is between 80%	and 100% of the total sieve tube 

element radius ܽ௧. 



2. Resistance of the sieve plate 

For the resistance of the sieve plate we follow (Mullendore et al., 2010) and take into account the 

contribution to the resistance from each individual pore. The resistance of a sieve plate of 

thickness ݈ consisting of ௣ܰ pores of (generally different) radii ܽ௣,௡ has two contributions. One 

due to the finite length of the pore and one due to the flow near the orifice (Weissberg, 1962; 

Dagan et al., 1982). We thus have for the plate resistance ܴ௣௟௔௧௘ that  
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where we have assumed that the sieve plates are unobstructed. Individual pore radii ܽ௣,௡ and 

average plate thickness from 22 sieve plates were determined as described in (Mullendore et al., 

2010). The plate resistance ܴ௣௟௔௧௘ was subsequently calculated from Eq. (A4). The value given 

in Table 2 is the average of the values obtained from 22 sieve plates. Average plate thickness, 

pore diameter, and number of pores are given in Table 1. 

3. Resistance of the SEOR 1 agglomeration 

As shown in Figures 6J, the SEOR1 agglomeration has a roughly circular opening of diameter 

݀௢	 ≃ 1	μm. The fibrous part of the agglomeration can thus be thought of as acting in series with 

a cylindrical tube, such that the total resistance of the agglomeration is given by 

   ܴ௣௟௨௚ ൌ ൫ܴ௢௣௘௡௜௡௚
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ିଵ ൯
ିଵ
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3.1 Resistance of the SEOR 1 agglomeration opening 

The hydraulic resistance of the opening is completely analogous to that of a single sieve pore, 

Eq. (A4) (Weissberg, 1962; Dagan et al., 1982) 
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where ܽ௢ ൌ
ௗ೚
ଶ

 is the radius of the opening and  ܮ௣ is the length of the agglomeration.  



3.2 Resistance of the SEOR 1 agglomeration  fiber network 

To calculate the resistance of the SEOR1 fiber agglomeration ௙ܴ௜௕௘௥௦ we think of the fibers as a 

porous medium consisting of a large number of parallel solid cylindrical rods of uniform 

diameter ݀௙. Analogous to Eq. (A1), we write the hydraulic resistance of the fiber network as 

   ௙ܴ௜௕௘௥௦ ൌ
୼௣೑೔್೐ೝೞ
ொ೑೔್೐ೝೞ

,   (A7) 

where Δ݌௙௜௕௘௥௦ is the pressure drop across the agglomeration and ܳ௙௜௕௘௥௦ is the volume flux 

through the fibers. To determine ௙ܴ௜௕௘௥௦ we follow Jackson and James (1986) and consider 

Darcy's law for the volumetric flow rate ܳ௙௜௕௘௥௦ 
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where ܣ௙௜௕௘௥௦ ൌ ሺܽ௧ଶߨ െ ܽ௢ଶሻ is the cross-section area of the fiborous part of the agglomeration, 

-is the permeability of the agglomeration. The  non ܭ ௣ is the length of the agglomeration, andܮ

dimensional permeability ߢ ൌ ସ௄

ௗ೑
మ depends on the volume fraction of solid material ߶ and on the 

arrangement of the fibers. It has been determined experimentally and theoretically for several 

different classes of cylinder arrangements (Jackson and James, 1986). For  flow parallel to an 

array of parallel cylindrical rods, the non-dimensional permeability ߢ is given by 
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where ߙ depends on the arrangement of the cylinders. A comparison with experiments suggests 

that ߙ ൌ 1.5 gives the best fit to a large collection of data, including flow through polymer gels, 

glass fibers and collagen, materials with dimensions similar to that of SEOR1 (Jackson and 

James, 1986). 

The arrangement of cylinders is not know in detail. We therefore approximate the solid volume 

fraction by the mean value obtained in three simple geometries 
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such that ߶ ≃ 0.45	and where ܵ ൌ ܾ ൅ ݀௙ is the distance between adjacent fiber centers 

(Tamayol and Bahrami, 2011). From Equations (A7) and (A8) we finally have for the 

agglomeration resistance 

   ௙ܴ௜௕௘௥௦ ൌ
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